The CDK Construct Library for AWS::ECS
Project description
Amazon ECS Construct Library
---This package contains constructs for working with Amazon Elastic Container Service (Amazon ECS).
Amazon ECS is a highly scalable, fast, container management service that makes it easy to run, stop, and manage Docker containers on a cluster of Amazon EC2 instances.
For further information on Amazon ECS, see the Amazon ECS documentation
The following example creates an Amazon ECS cluster, adds capacity to it, and instantiates the Amazon ECS Service with an automatic load balancer.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_ecs as ecs
# Create an ECS cluster
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
# Add capacity to it
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
instance_type=ec2.InstanceType("t2.xlarge"),
desired_capacity=3
)
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("DefaultContainer",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=512
)
# Instantiate an Amazon ECS Service
ecs_service = ecs.Ec2Service(self, "Service",
cluster=cluster,
task_definition=task_definition
)
For a set of constructs defining common ECS architectural patterns, see the @aws-cdk/aws-ecs-patterns
package.
Launch Types: AWS Fargate vs Amazon EC2
There are two sets of constructs in this library; one to run tasks on Amazon EC2 and one to run tasks on AWS Fargate.
- Use the
Ec2TaskDefinition
andEc2Service
constructs to run tasks on Amazon EC2 instances running in your account. - Use the
FargateTaskDefinition
andFargateService
constructs to run tasks on instances that are managed for you by AWS.
Here are the main differences:
- Amazon EC2: instances are under your control. Complete control of task to host allocation. Required to specify at least a memory reseration or limit for every container. Can use Host, Bridge and AwsVpc networking modes. Can attach Classic Load Balancer. Can share volumes between container and host.
- AWS Fargate: tasks run on AWS-managed instances, AWS manages task to host allocation for you. Requires specification of memory and cpu sizes at the taskdefinition level. Only supports AwsVpc networking modes and Application/Network Load Balancers. Only the AWS log driver is supported. Many host features are not supported such as adding kernel capabilities and mounting host devices/volumes inside the container.
For more information on Amazon EC2 vs AWS Fargate and networking see the AWS Documentation: AWS Fargate and Task Networking.
Clusters
A Cluster
defines the infrastructure to run your
tasks on. You can run many tasks on a single cluster.
The following code creates a cluster that can run AWS Fargate tasks:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
To use tasks with Amazon EC2 launch-type, you have to add capacity to the cluster in order for tasks to be scheduled on your instances. Typically, you add an AutoScalingGroup with instances running the latest Amazon ECS-optimized AMI to the cluster. There is a method to build and add such an AutoScalingGroup automatically, or you can supply a customized AutoScalingGroup that you construct yourself. It's possible to add multiple AutoScalingGroups with various instance types.
The following example creates an Amazon ECS cluster and adds capacity to it:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
# Either add default capacity
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
instance_type=ec2.InstanceType("t2.xlarge"),
desired_capacity=3
)
# Or add customized capacity. Be sure to start the Amazon ECS-optimized AMI.
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
vpc=vpc,
instance_type=ec2.InstanceType("t2.xlarge"),
machine_image=EcsOptimizedImage.amazon_linux(),
# Or use Amazon ECS-Optimized Amazon Linux 2 AMI
# machineImage: EcsOptimizedImage.amazonLinux2(),
desired_capacity=3
)
cluster.add_auto_scaling_group(auto_scaling_group)
If you omit the property vpc
, the construct will create a new VPC with two AZs.
Spot Instances
To add spot instances into the cluster, you must specify the spotPrice
in the ecs.AddCapacityOptions
and optionally enable the spotInstanceDraining
property.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Add an AutoScalingGroup with spot instances to the existing cluster
cluster.add_capacity("AsgSpot",
max_capacity=2,
min_capacity=2,
desired_capacity=2,
instance_type=ec2.InstanceType("c5.xlarge"),
spot_price="0.0735",
# Enable the Automated Spot Draining support for Amazon ECS
spot_instance_draining=True
)
Task definitions
A task Definition describes what a single copy of a task should look like. A task definition has one or more containers; typically, it has one main container (the default container is the first one that's added to the task definition, and it is marked essential) and optionally some supporting containers which are used to support the main container, doings things like upload logs or metrics to monitoring services.
To run a task or service with Amazon EC2 launch type, use the Ec2TaskDefinition
. For AWS Fargate tasks/services, use the
FargateTaskDefinition
. These classes provide a simplified API that only contain
properties relevant for that specific launch type.
For a FargateTaskDefinition
, specify the task size (memoryLimitMiB
and cpu
):
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mi_b=512,
cpu=256
)
To add containers to a task definition, call addContainer()
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
container = fargate_task_definition.add_container("WebContainer",
# Use an image from DockerHub
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)
For a Ec2TaskDefinition
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
ec2_task_definition = ecs.Ec2TaskDefinition(self, "TaskDef",
network_mode=NetworkMode.BRIDGE
)
container = ec2_task_definition.add_container("WebContainer",
# Use an image from DockerHub
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024
)
You can specify container properties when you add them to the task definition, or with various methods, e.g.:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
container.add_port_mappings(
container_port=3000
)
To use a TaskDefinition that can be used with either Amazon EC2 or
AWS Fargate launch types, use the TaskDefinition
construct.
When creating a task definition you have to specify what kind of tasks you intend to run: Amazon EC2, AWS Fargate, or both. The following example uses both:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
task_definition = ecs.TaskDefinition(self, "TaskDef",
memory_mi_b="512",
cpu="256",
network_mode=NetworkMode.AWS_VPC,
compatibility=ecs.Compatibility.EC2_AND_FARGATE
)
Images
Images supply the software that runs inside the container. Images can be obtained from either DockerHub or from ECR repositories, or built directly from a local Dockerfile.
ecs.ContainerImage.fromRegistry(imageName)
: use a public image.ecs.ContainerImage.fromRegistry(imageName, { credentials: mySecret })
: use a private image that requires credentials.ecs.ContainerImage.fromEcrRepository(repo, tag)
: use the given ECR repository as the image to start. If no tag is provided, "latest" is assumed.ecs.ContainerImage.fromAsset('./image')
: build and upload an image directly from aDockerfile
in your source directory.ecs.ContainerImage.fromDockerImageAsset(asset)
: uses an existing@aws-cdk/aws-ecr-assets.DockerImageAsset
as a container image.
Environment variables
To pass environment variables to the container, use the environment
and secrets
props.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
task_definition.add_container("container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
environment={# clear text, not for sensitive data
"STAGE": "prod"},
secrets={# Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store at container start-up.
"SECRET": ecs.Secret.from_secrets_manager(secret),
"DB_PASSWORD": ecs.Secret.from_secrets_manager(db_secret, "password"), # Reference a specific JSON field
"PARAMETER": ecs.Secret.from_ssm_parameter(parameter)}
)
The task execution role is automatically granted read permissions on the secrets/parameters.
Service
A Service
instantiates a TaskDefinition
on a Cluster
a given number of
times, optionally associating them with a load balancer.
If a task fails,
Amazon ECS automatically restarts the task.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
task_definition =
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
desired_count=5
)
Services
by default will create a security group if not provided.
If you'd like to specify which security groups to use you can override the securityGroups
property.
Include an application/network load balancer
Services
are load balancing targets and can be added to a target group, which will be attached to an application/network load balancers:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_elasticloadbalancingv2 as elbv2
service = ecs.FargateService(self, "Service")
lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
target_group1 = listener.add_targets("ECS1",
port=80,
targets=[service]
)
target_group2 = listener.add_targets("ECS2",
port=80,
targets=[service.load_balancer_target(
container_name="MyContainer",
container_port=8080
)]
)
Note that in the example above, the default service
only allows you to register the first essential container or the first mapped port on the container as a target and add it to a new target group. To have more control over which container and port to register as targets, you can use service.loadBalancerTarget()
to return a load balancing target for a specific container and port.
Alternatively, you can also create all load balancer targets to be registered in this service, add them to target groups, and attach target groups to listeners accordingly.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_elasticloadbalancingv2 as elbv2
service = ecs.FargateService(self, "Service")
lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
service.register_load_balancer_targets(
container_name="web",
container_port=80,
new_target_group_id="ECS",
listener=ecs.ListenerConfig.application_listener(listener,
protocol=elbv2.ApplicationProtocol.HTTPS
)
)
Using a Load Balancer from a different Stack
If you want to put your Load Balancer and the Service it is load balancing to in
different stacks, you may not be able to use the convenience methods
loadBalancer.addListener()
and listener.addTargets()
.
The reason is that these methods will create resources in the same Stack as the
object they're called on, which may lead to cyclic references between stacks.
Instead, you will have to create an ApplicationListener
in the service stack,
or an empty TargetGroup
in the load balancer stack that you attach your
service to.
See the ecs/cross-stack-load-balancer example for the alternatives.
Include a classic load balancer
Services
can also be directly attached to a classic load balancer as targets:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_elasticloadbalancing as elb
service = ecs.Ec2Service(self, "Service")
lb = elb.LoadBalancer(stack, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service)
Similarly, if you want to have more control over load balancer targeting:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_elasticloadbalancing as elb
service = ecs.Ec2Service(self, "Service")
lb = elb.LoadBalancer(stack, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service.load_balancer_target,
container_name="MyContainer",
container_port=80
)
There are two higher-level constructs available which include a load balancer for you that can be found in the aws-ecs-patterns module:
LoadBalancedFargateService
LoadBalancedEc2Service
Task Auto-Scaling
You can configure the task count of a service to match demand. Task auto-scaling is
configured by calling autoScaleTaskCount()
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
scaling = service.auto_scale_task_count(max_capacity=10)
scaling.scale_on_cpu_utilization("CpuScaling",
target_utilization_percent=50
)
scaling.scale_on_request_count("RequestScaling",
requests_per_target=10000,
target_group=target
)
Task auto-scaling is powered by Application Auto-Scaling. See that section for details.
Instance Auto-Scaling
If you're running on AWS Fargate, AWS manages the physical machines that your containers are running on for you. If you're running an Amazon ECS cluster however, your Amazon EC2 instances might fill up as your number of Tasks goes up.
To avoid placement errors, configure auto-scaling for your Amazon EC2 instance group so that your instance count scales with demand. To keep your Amazon EC2 instances halfway loaded, scaling up to a maximum of 30 instances if required:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
auto_scaling_group = cluster.add_capacity("DefaultAutoScalingGroup",
instance_type=ec2.InstanceType("t2.xlarge"),
min_capacity=3,
max_capacity=30,
desired_capacity=3,
# Give instances 5 minutes to drain running tasks when an instance is
# terminated. This is the default, turn this off by specifying 0 or
# change the timeout up to 900 seconds.
task_drain_time=Duration.seconds(300)
)
auto_scaling_group.scale_on_cpu_utilization("KeepCpuHalfwayLoaded",
target_utilization_percent=50
)
See the @aws-cdk/aws-autoscaling
library for more autoscaling options
you can configure on your instances.
Integration with CloudWatch Events
To start an Amazon ECS task on an Amazon EC2-backed Cluster, instantiate an
@aws-cdk/aws-events-targets.EcsTask
instead of an Ec2Service
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_events_targets as targets
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_asset(path.resolve(__dirname, "..", "eventhandler-image")),
memory_limit_mi_b=256,
logging=ecs.AwsLogDriver(stream_prefix="EventDemo")
)
# An Rule that describes the event trigger (in this case a scheduled run)
rule = events.Rule(self, "Rule",
schedule=events.Schedule.expression("rate(1 min)")
)
# Pass an environment variable to the container 'TheContainer' in the task
rule.add_target(targets.EcsTask(
cluster=cluster,
task_definition=task_definition,
task_count=1,
container_overrides=[ContainerOverride(
container_name="TheContainer",
environment=[TaskEnvironmentVariable(
name="I_WAS_TRIGGERED",
value="From CloudWatch Events"
)]
)]
))
Log Drivers
Currently Supported Log Drivers:
- awslogs
- fluentd
- gelf
- journald
- json-file
- splunk
- syslog
- awsfirelens
awslogs Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.awslogs(stream_prefix="EventDemo")
)
fluentd Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.fluentd()
)
gelf Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.gelf(address="my-gelf-address")
)
journald Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.journald()
)
json-file Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.json_file()
)
splunk Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.splunk(
token=cdk.SecretValue.secrets_manager("my-splunk-token"),
url="my-splunk-url"
)
)
syslog Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.syslog()
)
firelens Log Driver
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.firelens(
options={
"Name": "firehose",
"region": "us-west-2",
"delivery_stream": "my-stream"
}
)
)
Generic Log Driver
A generic log driver object exists to provide a lower level abstraction of the log driver configuration.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.GenericLogDriver(
log_driver="fluentd",
options={
"tag": "example-tag"
}
)
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for aws_cdk.aws_ecs-1.47.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1d5933ae2ee7f0b5a677710141b25b3e5823103605e84dfd697ce747159e7879 |
|
MD5 | e796867898cb0d0bfb6b70fd15bef77e |
|
BLAKE2b-256 | 15bc05bd4c3d78e6fcb50bd6268b26417b800cc72db4146f91d6bdfe755aaac2 |