Skip to main content

The CDK Construct Library for AWS Lambda in Python

Project description

Amazon Lambda Python Library

---

cdk-constructs: Experimental

The APIs of higher level constructs in this module are experimental and under active development. They are subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model and breaking changes will be announced in the release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


This library provides constructs for Python Lambda functions.

To use this module, you will need to have Docker installed.

Python Function

Define a PythonFunction:

python.PythonFunction(self, "MyFunction",
    entry="/path/to/my/function",  # required
    runtime=Runtime.PYTHON_3_8,  # required
    index="my_index.py",  # optional, defaults to 'index.py'
    handler="my_exported_func"
)

All other properties of lambda.Function are supported, see also the AWS Lambda construct library.

Python Layer

You may create a python-based lambda layer with PythonLayerVersion. If PythonLayerVersion detects a requirements.txt or Pipfile or poetry.lock with the associated pyproject.toml at the entry path, then PythonLayerVersion will include the dependencies inline with your code in the layer.

Define a PythonLayerVersion:

python.PythonLayerVersion(self, "MyLayer",
    entry="/path/to/my/layer"
)

A layer can also be used as a part of a PythonFunction:

python.PythonFunction(self, "MyFunction",
    entry="/path/to/my/function",
    runtime=Runtime.PYTHON_3_8,
    layers=[
        python.PythonLayerVersion(self, "MyLayer",
            entry="/path/to/my/layer"
        )
    ]
)

Packaging

If requirements.txt, Pipfile or poetry.lock exists at the entry path, the construct will handle installing all required modules in a Lambda compatible Docker container according to the runtime and with the Docker platform based on the target architecture of the Lambda function.

Python bundles are only recreated and published when a file in a source directory has changed. Therefore (and as a general best-practice), it is highly recommended to commit a lockfile with a list of all transitive dependencies and their exact versions. This will ensure that when any dependency version is updated, the bundle asset is recreated and uploaded.

To that end, we recommend using [pipenv] or [poetry] which have lockfile support.

Packaging is executed using the Packaging class, which:

  1. Infers the packaging type based on the files present.
  2. If it sees a Pipfile or a poetry.lock file, it exports it to a compatible requirements.txt file with credentials (if they're available in the source files or in the bundling container).
  3. Installs dependencies using pip.
  4. Copies the dependencies into an asset that is bundled for the Lambda package.

Lambda with a requirements.txt

.
├── lambda_function.py # exports a function named 'handler'
├── requirements.txt # has to be present at the entry path

Lambda with a Pipfile

.
├── lambda_function.py # exports a function named 'handler'
├── Pipfile # has to be present at the entry path
├── Pipfile.lock # your lock file

Lambda with a poetry.lock

.
├── lambda_function.py # exports a function named 'handler'
├── pyproject.toml # your poetry project definition
├── poetry.lock # your poetry lock file has to be present at the entry path

Excluding source files

You can exclude files from being copied using the optional bundling string array parameter assetExcludes:

python.PythonFunction(self, "function",
    entry="/path/to/poetry-function",
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        # translates to `rsync --exclude='.venv'`
        asset_excludes=[".venv"]
    )
)

Including hashes

You can include hashes in poetry using the optional boolean parameter poetryIncludeHashes:

python.PythonFunction(self, "function",
    entry="/path/to/poetry-function",
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        poetry_include_hashes=True
    )
)

Excluding URLs

You can exclude URLs in poetry using the optional boolean parameter poetryWithoutUrls:

python.PythonFunction(self, "function",
    entry="/path/to/poetry-function",
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        poetry_without_urls=True
    )
)

Custom Bundling

Custom bundling can be performed by passing in additional build arguments that point to index URLs to private repos, or by using an entirely custom Docker images for bundling dependencies. The build args currently supported are:

  • PIP_INDEX_URL
  • PIP_EXTRA_INDEX_URL
  • HTTPS_PROXY

Additional build args for bundling that refer to PyPI indexes can be specified as:

entry = "/path/to/function"
image = DockerImage.from_build(entry)

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        build_args={"PIP_INDEX_URL": "https://your.index.url/simple/", "PIP_EXTRA_INDEX_URL": "https://your.extra-index.url/simple/"}
    )
)

If using a custom Docker image for bundling, the dependencies are installed with pip, pipenv or poetry by using the Packaging class. A different bundling Docker image that is in the same directory as the function can be specified as:

entry = "/path/to/function"
image = DockerImage.from_build(entry)

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(image=image)
)

You can set additional Docker options to configure the build environment:

entry = "/path/to/function"

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        network="host",
        security_opt="no-new-privileges",
        user="user:group",
        volumes_from=["777f7dc92da7"],
        volumes=[DockerVolume(host_path="/host-path", container_path="/container-path")]
    )
)

Custom Bundling with Code Artifact

To use a Code Artifact PyPI repo, the PIP_INDEX_URL for bundling the function can be customized (requires AWS CLI in the build environment):

from child_process import exec_sync


entry = "/path/to/function"
image = DockerImage.from_build(entry)

domain = "my-domain"
domain_owner = "111122223333"
repo_name = "my_repo"
region = "us-east-1"
code_artifact_auth_token = exec_sync(f"aws codeartifact get-authorization-token --domain {domain} --domain-owner {domainOwner} --query authorizationToken --output text").to_string().trim()

index_url = f"https://aws:{codeArtifactAuthToken}@{domain}-{domainOwner}.d.codeartifact.{region}.amazonaws.com/pypi/{repoName}/simple/"

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        environment={"PIP_INDEX_URL": index_url}
    )
)

The index URL or the token are only used during bundling and thus not included in the final asset. Setting only environment variable for PIP_INDEX_URL or PIP_EXTRA_INDEX_URL should work for accesing private Python repositories with pip, pipenv and poetry based dependencies.

If you also want to use the Code Artifact repo for building the base Docker image for bundling, use buildArgs. However, note that setting custom build args for bundling will force the base bundling image to be rebuilt every time (i.e. skip the Docker cache). Build args can be customized as:

from child_process import exec_sync


entry = "/path/to/function"
image = DockerImage.from_build(entry)

domain = "my-domain"
domain_owner = "111122223333"
repo_name = "my_repo"
region = "us-east-1"
code_artifact_auth_token = exec_sync(f"aws codeartifact get-authorization-token --domain {domain} --domain-owner {domainOwner} --query authorizationToken --output text").to_string().trim()

index_url = f"https://aws:{codeArtifactAuthToken}@{domain}-{domainOwner}.d.codeartifact.{region}.amazonaws.com/pypi/{repoName}/simple/"

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        build_args={"PIP_INDEX_URL": index_url}
    )
)

Command hooks

It is possible to run additional commands by specifying the commandHooks prop:

entry = "/path/to/function"
python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        command_hooks={
            # run tests
            def before_bundling(self, input_dir):
                return ["pytest"],
            def after_bundling(self, input_dir):
                return ["pylint"]
        }
    )
)

The following hooks are available:

  • beforeBundling: runs before all bundling commands
  • afterBundling: runs after all bundling commands

They all receive the directory containing the dependencies file (inputDir) and the directory where the bundled asset will be output (outputDir). They must return an array of commands to run. Commands are chained with &&.

The commands will run in the environment in which bundling occurs: inside the container for Docker bundling or on the host OS for local bundling.

Docker based bundling in complex Docker configurations

By default the input and output of Docker based bundling is handled via bind mounts. In situtations where this does not work, like Docker-in-Docker setups or when using a remote Docker socket, you can configure an alternative, but slower, variant that also works in these situations.

entry = "/path/to/function"

python.PythonFunction(self, "function",
    entry=entry,
    runtime=Runtime.PYTHON_3_8,
    bundling=python.BundlingOptions(
        bundling_file_access=BundlingFileAccess.VOLUME_COPY
    )
)

Troubleshooting

Containerfile: no such file or directory

If you are on a Mac, using Finch instead of Docker, and see an error like this:

lstat /private/var/folders/zx/d5wln9n10sn0tcj1v9798f1c0000gr/T/jsii-kernel-9VYgrO/node_modules/@aws-cdk/aws-lambda-python-alpha/lib/Containerfile: no such file or directory

That is a sign that your temporary directory has not been mapped into the Finch VM. Add the following to ~/.finch/finch.yaml:

additional_directories:
  - path: /private/var/folders/
  - path: /var/folders/

Then restart the Finch VM by running finch vm stop && finch vm start.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file aws_cdk_aws_lambda_python_alpha-2.170.0a0.tar.gz.

File metadata

File hashes

Hashes for aws_cdk_aws_lambda_python_alpha-2.170.0a0.tar.gz
Algorithm Hash digest
SHA256 b56b5e22b915af8b40e8295e5938a4b0802faf875931e5a579c5bea8dce33bcc
MD5 2c8933c366730de7b6f12c974a7a180b
BLAKE2b-256 45b21cfcb37e5f3936fb46f65566ba09239e08389ae053798949387985cbacea

See more details on using hashes here.

File details

Details for the file aws_cdk.aws_lambda_python_alpha-2.170.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for aws_cdk.aws_lambda_python_alpha-2.170.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 03f1af0c020aee3245a18d1afc201603206e87b64c8e5965d9b713dca2c4fb62
MD5 d6aa19c027cc4ed56e85eb1a08193568
BLAKE2b-256 515570c512b91feddbf0fb4570adb194c4e8f4f05b212fd9320ba81643edd85b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page