CDK Constructs for AWS RDS
Project description
Amazon Relational Database Service Construct Library
---All classes with the
Cfn
prefix in this module (CFN Resources) are always stable and safe to use.
The APIs of higher level constructs in this module are in developer preview before they become stable. We will only make breaking changes to address unforeseen API issues. Therefore, these APIs are not subject to Semantic Versioning, and breaking changes will be announced in release notes. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.
# Example automatically generated. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_rds as rds
Starting a clustered database
To set up a clustered database (like Aurora), define a DatabaseCluster
. You must
always launch a database in a VPC. Use the vpcSubnets
attribute to control whether
your instances will be launched privately or publicly:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
cluster = rds.DatabaseCluster(self, "Database",
engine=rds.DatabaseClusterEngine.AURORA,
master_user={
"username": "clusteradmin"
},
instance_props={
# optional, defaults to t3.medium
"instance_type": ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.SMALL),
"vpc_subnets": {
"subnet_type": ec2.SubnetType.PRIVATE
},
"vpc": vpc
}
)
To use a specific version of the engine
(which is recommended, in order to avoid surprise updates when RDS add support for a newer version of the engine),
use the static factory methods on DatabaseClusterEngine
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
rds.DatabaseCluster(self, "Database",
engine=rds.DatabaseClusterEngine.aurora(
version=rds.AuroraEngineVersion.VER_1_17_9
), ...
)
If there isn't a constant for the exact version you want to use,
all of the Version
classes have a static of
method that can be used to create an arbitrary version.
By default, the master password will be generated and stored in AWS Secrets Manager with auto-generated description.
Your cluster will be empty by default. To add a default database upon construction, specify the
defaultDatabaseName
attribute.
Starting an instance database
To set up a instance database, define a DatabaseInstance
. You must
always launch a database in a VPC. Use the vpcPlacement
attribute to control whether
your instances will be launched privately or publicly:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
# optional, defaults to m5.large
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.SMALL),
master_username="syscdk",
vpc=vpc,
vpc_placement={
"subnet_type": ec2.SubnetType.PRIVATE
}
)
By default, the master password will be generated and stored in AWS Secrets Manager.
To use a specific version of the engine
(which is recommended, in order to avoid surprise updates when RDS add support for a newer version of the engine),
use the static factory methods on DatabaseInstanceEngine
:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.oracle_se2(
version=rds.OracleEngineVersion.VER_19
), ...
)
If there isn't a constant for the exact version you want to use,
all of the Version
classes have a static of
method that can be used to create an arbitrary version.
To use the storage auto scaling option of RDS you can specify the maximum allocated storage. This is the upper limit to which RDS can automatically scale the storage. More info can be found here Example for max storage configuration:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
# optional, defaults to m5.large
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.SMALL),
master_username="syscdk",
vpc=vpc,
max_allocated_storage=200
)
Use DatabaseInstanceFromSnapshot
and DatabaseInstanceReadReplica
to create an instance from snapshot or
a source database respectively:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
rds.DatabaseInstanceFromSnapshot(stack, "Instance",
snapshot_identifier="my-snapshot",
engine=rds.DatabaseInstanceEngine.POSTGRES,
# optional, defaults to m5.large
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.LARGE),
vpc=vpc
)
rds.DatabaseInstanceReadReplica(stack, "ReadReplica",
source_database_instance=source_instance,
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE2, ec2.InstanceSize.LARGE),
vpc=vpc
)
Creating a "production" Oracle database instance with option and parameter groups:
# Example automatically generated. See https://github.com/aws/jsii/issues/826
# Set open cursors with parameter group
parameter_group = rds.ParameterGroup(self, "ParameterGroup",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
parameters={
"open_cursors": "2500"
}
)
option_group = rds.OptionGroup(self, "OptionGroup",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
configurations=[OptionConfiguration(
name="XMLDB"
), OptionConfiguration(
name="OEM",
port=1158,
vpc=vpc
)
]
)
# Allow connections to OEM
option_group.option_connections.OEM.connections.allow_default_port_from_any_ipv4()
# Database instance with production values
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
license_model=rds.LicenseModel.BRING_YOUR_OWN_LICENSE,
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE3, ec2.InstanceSize.MEDIUM),
multi_az=True,
storage_type=rds.StorageType.IO1,
master_username="syscdk",
vpc=vpc,
database_name="ORCL",
storage_encrypted=True,
backup_retention=cdk.Duration.days(7),
monitoring_interval=cdk.Duration.seconds(60),
enable_performance_insights=True,
cloudwatch_logs_exports=["trace", "audit", "alert", "listener"
],
cloudwatch_logs_retention=logs.RetentionDays.ONE_MONTH,
auto_minor_version_upgrade=False,
option_group=option_group,
parameter_group=parameter_group
)
# Allow connections on default port from any IPV4
instance.connections.allow_default_port_from_any_ipv4()
# Rotate the master user password every 30 days
instance.add_rotation_single_user()
# Add alarm for high CPU
cloudwatch.Alarm(self, "HighCPU",
metric=instance.metric_cPUUtilization(),
threshold=90,
evaluation_periods=1
)
# Trigger Lambda function on instance availability events
fn = lambda.Function(self, "Function",
code=lambda.Code.from_inline("exports.handler = (event) => console.log(event);"),
handler="index.handler",
runtime=lambda.Runtime.NODEJS_10_X
)
availability_rule = instance.on_event("Availability", target=targets.LambdaFunction(fn))
availability_rule.add_event_pattern(
detail={
"EventCategories": ["availability"
]
}
)
Add XMLDB and OEM with option group
# Example automatically generated. See https://github.com/aws/jsii/issues/826
# Set open cursors with parameter group
parameter_group = rds.ParameterGroup(self, "ParameterGroup",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
parameters={
"open_cursors": "2500"
}
)
option_group = rds.OptionGroup(self, "OptionGroup",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
configurations=[OptionConfiguration(
name="XMLDB"
), OptionConfiguration(
name="OEM",
port=1158,
vpc=vpc
)
]
)
# Allow connections to OEM
option_group.option_connections.OEM.connections.allow_default_port_from_any_ipv4()
# Database instance with production values
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.ORACLE_SE1,
license_model=rds.LicenseModel.BRING_YOUR_OWN_LICENSE,
instance_type=ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE3, ec2.InstanceSize.MEDIUM),
multi_az=True,
storage_type=rds.StorageType.IO1,
master_username="syscdk",
vpc=vpc,
database_name="ORCL",
storage_encrypted=True,
backup_retention=cdk.Duration.days(7),
monitoring_interval=cdk.Duration.seconds(60),
enable_performance_insights=True,
cloudwatch_logs_exports=["trace", "audit", "alert", "listener"
],
cloudwatch_logs_retention=logs.RetentionDays.ONE_MONTH,
auto_minor_version_upgrade=False,
option_group=option_group,
parameter_group=parameter_group
)
# Allow connections on default port from any IPV4
instance.connections.allow_default_port_from_any_ipv4()
# Rotate the master user password every 30 days
instance.add_rotation_single_user()
# Add alarm for high CPU
cloudwatch.Alarm(self, "HighCPU",
metric=instance.metric_cPUUtilization(),
threshold=90,
evaluation_periods=1
)
# Trigger Lambda function on instance availability events
fn = lambda.Function(self, "Function",
code=lambda.Code.from_inline("exports.handler = (event) => console.log(event);"),
handler="index.handler",
runtime=lambda.Runtime.NODEJS_10_X
)
availability_rule = instance.on_event("Availability", target=targets.LambdaFunction(fn))
availability_rule.add_event_pattern(
detail={
"EventCategories": ["availability"
]
}
)
Instance events
To define Amazon CloudWatch event rules for database instances, use the onEvent
method:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
rule = instance.on_event("InstanceEvent", target=targets.LambdaFunction(fn))
Connecting
To control who can access the cluster or instance, use the .connections
attribute. RDS databases have
a default port, so you don't need to specify the port:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
cluster.connections.allow_from_any_ipv4("Open to the world")
The endpoints to access your database cluster will be available as the .clusterEndpoint
and .readerEndpoint
attributes:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
write_address = cluster.cluster_endpoint.socket_address
For an instance database:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
address = instance.instance_endpoint.socket_address
Rotating credentials
When the master password is generated and stored in AWS Secrets Manager, it can be rotated automatically:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
instance.add_rotation_single_user()
# Example automatically generated. See https://github.com/aws/jsii/issues/826
cluster = rds.DatabaseCluster(stack, "Database",
engine=rds.DatabaseClusterEngine.AURORA,
master_user=Login(
username="admin"
),
instance_props={
"instance_type": ec2.InstanceType.of(ec2.InstanceClass.BURSTABLE3, ec2.InstanceSize.SMALL),
"vpc": vpc
}
)
cluster.add_rotation_single_user()
The multi user rotation scheme is also available:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
instance.add_rotation_multi_user("MyUser",
secret=my_imported_secret
)
It's also possible to create user credentials together with the instance/cluster and add rotation:
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
my_user_secret = rds.DatabaseSecret(self, "MyUserSecret",
username="myuser",
master_secret=instance.secret
)
my_user_secret_attached = my_user_secret.attach(instance)# Adds DB connections information in the secret
instance.add_rotation_multi_user("MyUser", # Add rotation using the multi user scheme
secret=my_user_secret_attached)
Note: This user must be created manually in the database using the master credentials. The rotation will start as soon as this user exists.
See also @aws-cdk/aws-secretsmanager for credentials rotation of existing clusters/instances.
Metrics
Database instances expose metrics (cloudwatch.Metric
):
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# The number of database connections in use (average over 5 minutes)
db_connections = instance.metric_database_connections()
# The average amount of time taken per disk I/O operation (average over 1 minute)
read_latency = instance.metric("ReadLatency", statistic="Average", period_sec=60)
Enabling S3 integration to a cluster (non-serverless Aurora only)
Data in S3 buckets can be imported to and exported from Aurora databases using SQL queries. To enable this
functionality, set the s3ImportBuckets
and s3ExportBuckets
properties for import and export respectively. When
configured, the CDK automatically creates and configures IAM roles as required.
Additionally, the s3ImportRole
and s3ExportRole
properties can be used to set this role directly.
For Aurora MySQL, read more about loading data from S3 and saving data into S3.
For Aurora PostgreSQL, read more about loading data from S3 and saving data into S3.
The following snippet sets up a database cluster with different S3 buckets where the data is imported and exported -
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.aws_s3 as s3
import_bucket = s3.Bucket(self, "importbucket")
export_bucket = s3.Bucket(self, "exportbucket")
rds.DatabaseCluster(self, "dbcluster",
# ...
s3_import_buckets=[import_bucket],
s3_export_buckets=[export_bucket]
)
Creating a Database Proxy
Amazon RDS Proxy sits between your application and your relational database to efficiently manage connections to the database and improve scalability of the application. Learn more about at Amazon RDS Proxy
The following code configures an RDS Proxy for a DatabaseInstance
.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
import aws_cdk.core as cdk
import aws_cdk.aws_ec2 as ec2
import aws_cdk.aws_rds as rds
import aws_cdk.aws_secretsmanager as secrets
vpc =
security_group =
secrets = [...]
db_instance =
proxy = db_instance.add_proxy("proxy",
connection_borrow_timeout=cdk.Duration.seconds(30),
max_connections_percent=50,
secrets=secrets,
vpc=vpc
)
Exporting Logs
You can publish database logs to Amazon CloudWatch Logs. With CloudWatch Logs, you can perform real-time analysis of the log data, store the data in highly durable storage, and manage the data with the CloudWatch Logs Agent. This is available for both database instances and clusters; the types of logs available depend on the database type and engine being used.
# Example automatically generated without compilation. See https://github.com/aws/jsii/issues/826
# Exporting logs from a cluster
cluster = rds.DatabaseCluster(self, "Database",
engine=rds.DatabaseClusterEngine.aurora({
"version": rds.AuroraEngineVersion.VER_1_17_9
}, cloudwatch_logs_exports, ["error", "general", "slowquery", "audit"], cloudwatch_logs_retention, logs.RetentionDays.THREE_MONTHS, cloudwatch_logs_retention_role, my_logs_publishing_role)
)
# Exporting logs from an instance
instance = rds.DatabaseInstance(self, "Instance",
engine=rds.DatabaseInstanceEngine.postgres(
version=rds.PostgresEngineVersion.VER_12_3
),
# ...
cloudwatch_logs_exports=["postgresql"]
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file aws-cdk.aws-rds-1.60.0.tar.gz
.
File metadata
- Download URL: aws-cdk.aws-rds-1.60.0.tar.gz
- Upload date:
- Size: 386.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3b626772a1d1cc2a124de60176292a91e6c39377d6dcdb9273e400593c7200c |
|
MD5 | 0d51bb20b4f49b95003fc549341b173a |
|
BLAKE2b-256 | 2f9ffcdf87d0b48546e0d9cc02d29bef7aa78d591da01c0b4d99dd3fbc961e33 |
File details
Details for the file aws_cdk.aws_rds-1.60.0-py3-none-any.whl
.
File metadata
- Download URL: aws_cdk.aws_rds-1.60.0-py3-none-any.whl
- Upload date:
- Size: 383.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c9596b576e8c2617666170c0997c7b7d51cb41219a7951f04c0a419ff5d14af |
|
MD5 | b402eaf88d13918c3fddf6371090b32a |
|
BLAKE2b-256 | 787f290249f1fd112e9dc635279d7b8108a1002a99191c5b0b1413bcf424a475 |