AWS Encryption SDK implementation for Python
Project description
The AWS Encryption SDK for Python provides a fully compliant, native Python implementation of the AWS Encryption SDK.
The latest full documentation can be found at Read the Docs.
Find us on GitHub.
Getting Started
Required Prerequisites
Python 2.7+ or 3.4+
cryptography >= 1.8.1
boto3
attrs
Installation
Concepts
There are four main concepts that you need to understand to use this library:
Cryptographic Materials Managers
Cryptographic materials managers (CMMs) are resources that collect cryptographic materials and prepare them for use by the Encryption SDK core logic.
An example of a CMM is the default CMM, which is automatically generated anywhere a caller provides a master key provider. The default CMM collects encrypted data keys from all master keys referenced by the master key provider.
An example of a more advanced CMM is the caching CMM, which caches cryptographic materials provided by another CMM.
Master Key Providers
Master key providers are resources that provide master keys. An example of a master key provider is AWS KMS.
To encrypt data in this client, a MasterKeyProvider object must contain at least one MasterKey object.
MasterKeyProvider objects can also contain other MasterKeyProvider objects.
Master Keys
Master keys generate, encrypt, and decrypt data keys. An example of a master key is a KMS customer master key (CMK).
Data Keys
Data keys are the encryption keys that are used to encrypt your data. If your algorithm suite uses a key derivation function, the data key is used to generate the key that directly encrypts the data.
Usage
EncryptionSDKClient
To use this module, you (the caller) must first create an instance of the EncryptionSDKClient class. The constructor to this class requires a single keyword argument, commitment_policy. There is currently only one valid value for this argument: FORBID_ENCRYPT_ALLOW_DECRYPT.
import aws_encryption_sdk
from aws_encryption_sdk.identifiers import CommitmentPolicy
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT
)
You must then create an instance of either a master key provider or a CMM. The examples in this readme use the StrictAwsKmsMasterKeyProvider class.
StrictAwsKmsMasterKeyProvider
A StrictAwsKmsMasterKeyProvider is configured with an explicit list of AWS KMS CMKs with which to encrypt and decrypt data. On encryption, it encrypts the plaintext with all configured CMKs. On decryption, it only attempts to decrypt ciphertexts that have been wrapped with one of the configured CMKs.
Because the StrictAwsKmsMasterKeyProvider uses the boto3 SDK to interact with AWS KMS, it requires AWS Credentials. To provide these credentials, use the standard means by which boto3 locates credentials or provide a pre-existing instance of a botocore session to the StrictAwsKmsMasterKeyProvider. This latter option can be useful if you have an alternate way to store your AWS credentials or you want to reuse an existing instance of a botocore session in order to decrease startup costs.
To create a StrictAwsKmsMasterKeyProvider you must provide one or more CMKs. If you configure the the StrictAwsKmsMasterKeyProvider with multiple CMKs, the final message will include a copy of the data key encrypted by each configured CMK.
import aws_encryption_sdk
kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[
'arn:aws:kms:us-east-1:2222222222222:key/22222222-2222-2222-2222-222222222222',
'arn:aws:kms:us-east-1:3333333333333:key/33333333-3333-3333-3333-333333333333'
])
You can add CMKs from multiple regions to the StrictAwsKmsMasterKeyProvider.
import aws_encryption_sdk
kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[
'arn:aws:kms:us-east-1:2222222222222:key/22222222-2222-2222-2222-222222222222',
'arn:aws:kms:us-west-2:3333333333333:key/33333333-3333-3333-3333-333333333333',
'arn:aws:kms:ap-northeast-1:4444444444444:key/44444444-4444-4444-4444-444444444444'
])
DiscoveryAwsKmsMasterKeyProvider
We recommend using a StrictAwsKmsMasterKeyProvider in order to ensure that you can only encrypt and decrypt data using the AWS KMS CMKs you expect. However, if you are unable to explicitly identify the AWS KMS CMKs that should be used for decryption, you can instead use a DiscoveryAwsKmsMasterKeyProvider for decryption operations. This provider attempts decryption of any ciphertexts as long as they match a DiscoveryFilter that you configure. A DiscoveryFilter consists of a list of AWS account ids and an AWS partition.
import aws_encryption_sdk
from aws_encryption_sdk.key_providers.kms import DiscoveryFilter
discovery_filter = DiscoveryFilter(
account_ids=['222222222222', '333333333333'],
partition='aws'
)
kms_key_provider = aws_encryption_sdk.DiscoveryAwsKmsMasterKeyProvider(
discovery_filter=discovery_filter
)
If you do not want to filter the set of allowed accounts, you can also omit the discovery_filter argument.
Note that a DiscoveryAwsKmsMasterKeyProvider cannot be used for encryption operations.
Encryption and Decryption
After you create an instance of an EncryptionSDKClient and a MasterKeyProvider, you can use either of the client’s two encrypt/decrypt functions to encrypt and decrypt your data.
import aws_encryption_sdk
from aws_encryption_sdk.identifiers import CommitmentPolicy
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT
)
kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[
'arn:aws:kms:us-east-1:2222222222222:key/22222222-2222-2222-2222-222222222222',
'arn:aws:kms:us-east-1:3333333333333:key/33333333-3333-3333-3333-333333333333'
])
my_plaintext = b'This is some super secret data! Yup, sure is!'
my_ciphertext, encryptor_header = client.encrypt(
source=my_plaintext,
key_provider=kms_key_provider
)
decrypted_plaintext, decryptor_header = client.decrypt(
source=my_ciphertext,
key_provider=kms_key_provider
)
assert my_plaintext == decrypted_plaintext
assert encryptor_header.encryption_context == decryptor_header.encryption_context
You can provide an encryption context: a form of additional authenticating information.
import aws_encryption_sdk
from aws_encryption_sdk.identifiers import CommitmentPolicy
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT
)
kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[
'arn:aws:kms:us-east-1:2222222222222:key/22222222-2222-2222-2222-222222222222',
'arn:aws:kms:us-east-1:3333333333333:key/33333333-3333-3333-3333-333333333333'
])
my_plaintext = b'This is some super secret data! Yup, sure is!'
my_ciphertext, encryptor_header = client.encrypt(
source=my_plaintext,
key_provider=kms_key_provider,
encryption_context={
'not really': 'a secret',
'but adds': 'some authentication'
}
)
decrypted_plaintext, decryptor_header = client.decrypt(
source=my_ciphertext,
key_provider=kms_key_provider
)
assert my_plaintext == decrypted_plaintext
assert encryptor_header.encryption_context == decryptor_header.encryption_context
Streaming
If you are handling large files or simply do not want to put the entire plaintext or ciphertext in memory at once, you can use this library’s streaming clients directly. The streaming clients are file-like objects, and behave exactly as you would expect a Python file object to behave, offering context manager and iteration support.
import aws_encryption_sdk
from aws_encryption_sdk.identifiers import CommitmentPolicy
import filecmp
client = aws_encryption_sdk.EncryptionSDKClient(
commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT
)
kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[
'arn:aws:kms:us-east-1:2222222222222:key/22222222-2222-2222-2222-222222222222',
'arn:aws:kms:us-east-1:3333333333333:key/33333333-3333-3333-3333-333333333333'
])
plaintext_filename = 'my-secret-data.dat'
ciphertext_filename = 'my-encrypted-data.ct'
with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as ct_file:
with client.stream(
mode='e',
source=pt_file,
key_provider=kms_key_provider
) as encryptor:
for chunk in encryptor:
ct_file.write(chunk)
new_plaintext_filename = 'my-decrypted-data.dat'
with open(ciphertext_filename, 'rb') as ct_file, open(new_plaintext_filename, 'wb') as pt_file:
with client.stream(
mode='d',
source=ct_file,
key_provider=kms_key_provider
) as decryptor:
for chunk in decryptor:
pt_file.write(chunk)
assert filecmp.cmp(plaintext_filename, new_plaintext_filename)
assert encryptor.header.encryption_context == decryptor.header.encryption_context
Performance Considerations
Adjusting the frame size can significantly improve the performance of encrypt/decrypt operations with this library.
Processing each frame in a framed message involves a certain amount of overhead. If you are encrypting a large file, increasing the frame size can offer potentially significant performance gains. We recommend that you tune these values to your use-case in order to obtain peak performance.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for aws_encryption_sdk-1.7.1-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 062c8eb3c2fcb2ff35364f08e691534df8fd6b9f443d00d513f23e91072a692e |
|
MD5 | 987ca5bfc2ffb48a285699069361a133 |
|
BLAKE2b-256 | 7c5b5884f2b036b3fd00094d1e5a244917fd10edc64a9cb03b2eac0fd99621b3 |