Skip to main content

Simplified SageMaker Feature Store

Project description

aws_feature_store

It is a simplified implementation of SageMaker Feature Store approach.

Installation


Use the package manager pip to install foobar.

pip install aws_feature_store

Initialize feature group


from aws_feature_store import FeatureGroup,FeatureDefinition,FeatureTypeEnum


bucket_name = '{bucket_for_feature_store}'
s3_folder = '{folder_for_feature_store}'
my_feature_name = '{your_feature_name}'

feature_group_name = f'{my_feature_name}/commit_id={my_feature_name}_{commit_id}'
feature_group = FeatureGroup(
        name=feature_group_name,
        boto3_session = boto3_session,
        s3_uri=f"s3://{bucket_name}/{s3_folder}"
        )

Create feature group


def create_feature_group(feature_group):
    description="What is my feature group about"
    feature_script_repo="{repo_link_to_script}"
    data_source="{what data are used}"

    record_identifier_feature_name = "column name to store id" 
    event_time_feature_name = "{column name to store timestamp}"

    partition_columns=['biz_id','customer_id']
    
    feature_definitions=[
        FeatureDefinition(feature_name="column_name1", feature_type=FeatureTypeEnum.INTEGRAL),
        FeatureDefinition(feature_name="column_name2", feature_type=FeatureTypeEnum.STRING),
        ]
    
    feature_group.create(
        record_identifier_name=record_identifier_feature_name,
        event_time_feature_name=event_time_feature_name,
        feature_script_repo=feature_script_repo,
        partition_columns=partition_columns,
        data_source=data_source,
        description=description,
        file_format='parquet/json',
        feature_definitions=feature_definitions
    )
    
    return feature_group

if feature_group.exists() is None:
    feature_group = create_feature_group(feature_group)

Ingest data


import pandas as pd
data = pd.read_json('data.json')
feature_group.ingest_data_frame(data,f"mlfow_parent_run_id={parent_run_id}/{filename_without_extention}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

aws_feature_store-0.0.17.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

aws_feature_store-0.0.17-py3-none-any.whl (11.6 kB view details)

Uploaded Python 3

File details

Details for the file aws_feature_store-0.0.17.tar.gz.

File metadata

  • Download URL: aws_feature_store-0.0.17.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.0

File hashes

Hashes for aws_feature_store-0.0.17.tar.gz
Algorithm Hash digest
SHA256 c56bd83c7d38496dab17ee568f7a99428b468506efbd3c13b5ea704e5a818a70
MD5 063203adf96bbfbe6f92de9319caa192
BLAKE2b-256 17aa625c36b445e1720416166fc26f474921115a2060777b90c489731debb5da

See more details on using hashes here.

File details

Details for the file aws_feature_store-0.0.17-py3-none-any.whl.

File metadata

File hashes

Hashes for aws_feature_store-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 0396c8f4ab09fa28c9e287f99aff335cd89fe45a2d62344d7dead52dd0b548e2
MD5 eaf0763fb7d5675b1db8013549203bd7
BLAKE2b-256 6a9edc130182c60b335547c6eaab1ee6fb6701e8a9b939198d8ce38e01945d25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page