Skip to main content

CDK constructs for defining an interaction between an AWS Lambda function and an Amazon SageMaker inference endpoint.

Project description

aws-lambda-sagemakerendpoint module

---

Stability: Experimental

All classes are under active development and subject to non-backward compatible changes or removal in any future version. These are not subject to the Semantic Versioning model. This means that while you may use them, you may need to update your source code when upgrading to a newer version of this package.


Reference Documentation: https://docs.aws.amazon.com/solutions/latest/constructs/
Language Package
Python Logo Python aws_solutions_constructs.aws_lambda_sagemakerendpoint
Typescript Logo Typescript @aws-solutions-constructs/aws-lambda-sagemakerendpoint
Java Logo Java software.amazon.awsconstructs.services.lambdasagemakerendpoint

Overview

This AWS Solutions Construct implements an AWS Lambda function connected to an Amazon Sagemaker Endpoint.

Here is a minimal deployable pattern definition:

Typescript

import { Construct } from 'constructs';
import { Stack, StackProps, Duration } from 'aws-cdk-lib';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import { LambdaToSagemakerEndpoint, LambdaToSagemakerEndpointProps } from '@aws-solutions-constructs/aws-lambda-sagemakerendpoint';

const constructProps: LambdaToSagemakerEndpointProps = {
  modelProps: {
    primaryContainer: {
      image: '<AccountId>.dkr.ecr.<region>.amazonaws.com/linear-learner:latest',
      modelDataUrl: "s3://<bucket-name>/<prefix>/model.tar.gz",
    },
  },
  lambdaFunctionProps: {
    runtime: lambda.Runtime.PYTHON_3_8,
    code: lambda.Code.fromAsset(`lambda`),
    handler: 'index.handler',
    timeout: Duration.minutes(5),
    memorySize: 128,
  },
};

new LambdaToSagemakerEndpoint(this, 'LambdaToSagemakerEndpointPattern', constructProps);

Python

from constructs import Construct
from aws_solutions_constructs.aws_lambda_sagemakerendpoint import LambdaToSagemakerEndpoint, LambdaToSagemakerEndpointProps
from aws_cdk import (
    aws_lambda as _lambda,
    aws_sagemaker as sagemaker,
    Duration,
    Stack
)
from constructs import Construct

LambdaToSagemakerEndpoint(
    self, 'LambdaToSagemakerEndpointPattern',
    model_props=sagemaker.CfnModelProps(
        primary_container=sagemaker.CfnModel.ContainerDefinitionProperty(
            image='<AccountId>.dkr.ecr.<region>.amazonaws.com/linear-learner:latest',
            model_data_url='s3://<bucket-name>/<prefix>/model.tar.gz',
        ),
        execution_role_arn="executionRoleArn"
    ),
    lambda_function_props=_lambda.FunctionProps(
        code=_lambda.Code.from_asset('lambda'),
        runtime=_lambda.Runtime.PYTHON_3_9,
        handler='index.handler',
        timeout=Duration.minutes(5),
        memory_size=128
    ))

Java

import software.constructs.Construct;

import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.Duration;
import software.amazon.awscdk.services.lambda.*;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.sagemaker.*;
import software.amazon.awsconstructs.services.lambdasagemakerendpoint.*;

new LambdaToSagemakerEndpoint(this, "LambdaToSagemakerEndpointPattern",
        new LambdaToSagemakerEndpointProps.Builder()
                .modelProps(new CfnModelProps.Builder()
                        .primaryContainer(new CfnModel.ContainerDefinitionProperty.Builder()
                                .image("<AccountId>.dkr.ecr.<region>.amazonaws.com/linear_learner:latest")
                                .modelDataUrl("s3://<bucket_name>/<prefix>/model.tar.gz")
                                .build())
                        .executionRoleArn("executionRoleArn")
                        .build())
                .lambdaFunctionProps(new FunctionProps.Builder()
                        .runtime(Runtime.NODEJS_16_X)
                        .code(Code.fromAsset("lambda"))
                        .handler("index.handler")
                        .timeout(Duration.minutes(5))
                        .build())
                .build());

Pattern Construct Props

Name Type Description
existingLambdaObj? lambda.Function An optional, existing Lambda function to be used instead of the default function. Providing both this and lambdaFunctionProps will cause an error.
lambdaFunctionProps? lambda.FunctionProps Optional user-provided properties to override the default properties for the Lambda function.
existingSagemakerEndpointObj? sagemaker.CfnEndpoint An optional, existing SageMaker Endpoint to be used. Providing both this and endpointProps? will cause an error.
modelProps? sagemaker.CfnModelProps any
endpointConfigProps? sagemaker.CfnEndpointConfigProps Optional user-provided properties to override the default properties for the SageMaker Endpoint Config.
endpointProps? sagemaker.CfnEndpointProps Optional user-provided properties to override the default properties for the SageMaker Endpoint Config.
existingVpc? ec2.IVpc An optional, existing VPC into which this construct should be deployed. When deployed in a VPC, the Lambda function and Sagemaker Endpoint will use ENIs in the VPC to access network resources. An Interface Endpoint will be created in the VPC for Amazon SageMaker Runtime, and Amazon S3 VPC Endpoint. If an existing VPC is provided, the deployVpc? property cannot be true.
vpcProps? ec2.VpcProps Optional user-provided properties to override the default properties for the new VPC. enableDnsHostnames, enableDnsSupport, natGateways and subnetConfiguration are set by the Construct, so any values for those properties supplied here will be overridden. If deployVpc? is not true then this property will be ignored.
deployVpc? boolean Whether to create a new VPC based on vpcProps into which to deploy this pattern. Setting this to true will deploy the minimal, most private VPC to run the pattern:
  • One isolated subnet in each Availability Zone used by the CDK program
  • enableDnsHostnames and enableDnsSupport will both be set to true
If this property is true then existingVpc cannot be specified. Defaults to false.
sagemakerEnvironmentVariableName? string Optional Name for the Lambda function environment variable set to the name of the SageMaker endpoint. Default: SAGEMAKER_ENDPOINT_NAME

Pattern Properties

Name Type Description
lambdaFunction lambda.Function Returns an instance of the Lambda function created by the pattern.
sagemakerEndpoint sagemaker.CfnEndpoint Returns an instance of the SageMaker Endpoint created by the pattern.
sagemakerEndpointConfig? sagemaker.CfnEndpointConfig Returns an instance of the SageMaker EndpointConfig created by the pattern, if existingSagemakerEndpointObj? is not provided.
sagemakerModel? sagemaker.CfnModel Returns an instance of the SageMaker Model created by the pattern, if existingSagemakerEndpointObj? is not provided.
vpc? ec2.IVpc Returns an instance of the VPC created by the pattern, if deployVpc? is true, or existingVpc? is provided.

Default settings

Out of the box implementation of the Construct without any override will set the following defaults:

AWS Lambda Function

  • Configure limited privilege access IAM role for Lambda function

  • Enable reusing connections with Keep-Alive for NodeJs Lambda function

  • Allow the function to invoke the SageMaker endpoint for Inferences

  • Configure the function to access resources in the VPC, where the SageMaker endpoint is deployed

  • Enable X-Ray Tracing

  • Set environment variables:

    • (default) SAGEMAKER_ENDPOINT_NAME
    • AWS_NODEJS_CONNECTION_REUSE_ENABLED (for Node 10.x and higher functions).

Amazon SageMaker Endpoint

  • Configure limited privilege to create SageMaker resources
  • Deploy SageMaker model, endpointConfig, and endpoint
  • Configure the SageMaker endpoint to be deployed in a VPC
  • Deploy S3 VPC Endpoint and SageMaker Runtime VPC Interface

Architecture

Architecture Diagram


© Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file aws_solutions_constructs_aws_lambda_sagemakerendpoint-2.73.0.tar.gz.

File metadata

File hashes

Hashes for aws_solutions_constructs_aws_lambda_sagemakerendpoint-2.73.0.tar.gz
Algorithm Hash digest
SHA256 2089cd2437bd26c596ef4036afe2fe3445ca1647150a213de42ef883619d7dab
MD5 86aa9b7668cfd4d66c7df98164a2eeeb
BLAKE2b-256 cbf9daee94d3c28de333cb3929caf468c9f3f2ec40385b9ac98d7e0bd85b67fd

See more details on using hashes here.

File details

Details for the file aws_solutions_constructs.aws_lambda_sagemakerendpoint-2.73.0-py3-none-any.whl.

File metadata

File hashes

Hashes for aws_solutions_constructs.aws_lambda_sagemakerendpoint-2.73.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1ac84b7f7cdf958d7caa2a3f15f9b3ac8fd349f137e47a9ac08c85c54b32ff6a
MD5 03c9f6846d467ab9944ce9a811906116
BLAKE2b-256 90c9a44ad75533dbeeed87e5ac60286c3ec711d7fe7b22e7c13c31e9c227a624

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page