Skip to main content

AXLearn

Project description

The AXLearn Library for Deep Learning

This library is under active development and the API is subject to change.

Table of Contents

Section Description
Introduction What is AXLearn?
Getting Started Getting up and running with AXLearn.
Concepts Core concepts and design principles.
CLI User Guide How to use the CLI.
Infrastructure Core infrastructure components.

Introduction

AXLearn is a library built on top of JAX and XLA to support the development of large-scale deep learning models.

AXLearn takes an object-oriented approach to the software engineering challenges that arise from building, iterating, and maintaining models. The configuration system of the library lets users compose models from reusable building blocks and integrate with other libraries such as Flax and Hugging Face transformers.

AXLearn is built to scale. It supports the training of models with up to hundreds of billions of parameters across thousands of accelerators at high utilization. It is also designed to run on public clouds and provides tools to deploy and manage jobs and data. Built on top of GSPMD, AXLearn adopts a global computation paradigm to allow users to describe computation on a virtual global computer rather than on a per-accelerator basis.

AXLearn supports a wide range of applications, including natural language processing, computer vision, and speech recognition and contains baseline configurations for training state-of-the-art models.

Please see Concepts for more details on the core components and design of AXLearn, or Getting Started if you want to get your hands dirty.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file axlearn-0.0.1.dev20240211233521-py3-none-any.whl.

File metadata

File hashes

Hashes for axlearn-0.0.1.dev20240211233521-py3-none-any.whl
Algorithm Hash digest
SHA256 c73ab55c8de39ecf7e7723efa11f96d19a739763bf41a70664217557bcc7a8ae
MD5 bc89efa7554aacda92e6804fb616921c
BLAKE2b-256 93280c5a59978fa504cc49a4001164c887cfa97ec682e8a51d309417b791faef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page