Skip to main content

Estimate OBS sensor orientation

Project description

AzimPy

Estimate horizontal orientation of ocean-bottom seismograph

PyPI PyPI - Python Version PyPI - Format PyPI - Status GitHub tag (latest by date) GitHub release (latest by date) License: MIT DOI

Copyright (c) 2022 Yasunori SawakiORCID All rights reserved.

AzimPy is an open-source Python package for estimating the horizontal orientation of ocean-bottom seismographs. This package performs the Rayleigh-wave polarization method (e.g., Stachnik+ 2012; Doran & Laske 2017). One of the main classes OrientOBS, inherited from obspy.clients.fdsn.Client, searches an earthquake catalog for teleseismic events as a web client and computes Rayleigh-wave polarizations for each event–station pair. This package also provides other classes (e.g., OrientSingle, OrientAnalysis) and functions for statistical analysis of circular data and plotting the estimated azimuths with uncertainties.

Terms of use

  • Cite an article below (Sawaki et al., in press) and a Zenodo DOI for the specific version of AzimPy when you publish your reseach or make a presentation. The DOI representing the specific version is probably found through the Zenodo page for the latest version.
  • This package is under development, so any bug reports and suggestions are welcome!

Use cases

  • Sawaki, Y., Yamashita, Y., Ohyanagi, S., Garcia, E.S.M., Ito, A., Sugioka, H., Takahashi, T., Shinohara, M., & Ito, Y., Seafloor Depth Controls Seismograph Orientation Uncertainty, Geophys. J. Int., in press, https://doi.org/10.1093/gji/ggac397

How to install

[Recommended] Install AzimPy from PyPI in a new conda environment

$ conda create -n azimpy-test python=3.9 jupyter astropy "matplotlib>=3.5" "scipy>=1.4" pandas numpy tqdm
$ conda activate azimpy-test
(azimpy-test) $ conda install -c conda-forge "obspy>=1.3" 
(azimpy-test) $ python -m pip install AzimPy
  • [Alternative] pip install locally in the environment
$ conda create -n azimpy-test python=3.9 jupyter
$ conda activate azimpy-test
(azimpy-test) $ git clone -b v0.2.0 https://github.com/yasuit21/AzimPy.git
(azimpy-test) $ cd AzimPy
(azimpy-test) $ python -m pip install .

Optional installation : rpy2

Installation of R

(azimpy-test) $ conda install r-essentials r-base r-circular

Note that this installation will take time.

Then, set environent variables.

export R_HOME=/path/to/envs/azimpy-test/lib/R
export R_USER=/path/to/envs/azimpy-test/lib/python3.9/site-packages/rpy2

Installation of rpy2 in PyPI

(azimpy-test) $ python -m pip install rpy2
(azimpy-test) $ python -c "import azimpy"

If no warning or error is returned, the installation has been completed.

Usage

Compute Rayleigh-wave polarization

import obspy as ob
from azimpy import OrientOBS

## Initialize web client
obs = OrientOBS(base_url='USGS', timezone=9)

## Query earthquake event catalog
obs.query_events(
    starttime=ob.UTCDateTime('20200401000000'),
    endtime=ob.UTCDateTime('20201001000000'),
    minmagnitude=6.0,
    maxdepth=100,
    orderby='time-asc',
)

## Compute Rayleigh-wave polarization for each event
## Raw SAC data should be located in '/path/to/datadir'
obs.find_stream(
    '/path/to/datadir',
    output_path='/path/to/output/stationA1',
    polezero_fpath='/path/to/polezero/hoge.paz',
    fileformat=f'*.*.%y%m%d%H%M.sac',
    freqmin=1./40, freqmax=1./20,
    max_workers=4,
    vel_surface=4.0,
    time_before_arrival=-20.0,
    time_after_arrival=600.0,
    distmin=5., distmax=120.,
)

Then, the output dataframe will be pickled as stationA1_020_040.pickle under /path/to/output/stationA1 directory. The pickled dataframe can be loaded by pd.read_pickle().

Perform circular statistics and make a plot

Single station

The example uses a single station stationA1.

import pandas as pd
from azimpy import OrientSingle, read_chtbl

## Init params
min_CC = 0.5
alpha_CI = 0.05  ## 100(1-a)% CI
bootstrap_iteration = 5000

## The output dataframe of orientations
df_orient = pd.read_pickle(
    '/path/to/output/stationA1/stationA1_020_040.pickle'
)

## Init OrientSingle for circular statistics
orientsingle_raw = OrientSingle(
    df_orient, 'stationA1', 
    if_selection=False,  # w/o bootstrap analysis
    min_CC=min_CC, weight_CC=True,
)
orientsingle_boot = OrientSingle(
    df_orient, 'stationA1', 
    if_selection=True,  # perform bootstrap analysis
    min_CC=min_CC, weight_CC=True, K=5.0,
    bootstrap_iteration=bootstrap_iteration, alpha_CI=alpha_CI
)

## Init a figure with subfigures
fig = plt.figure(figsize=[8,4])
subfigs = fig.subfigures(nrows=1, ncols=2).flatten()

## Plot for `orientsingle_raw`
orientsingle_raw.plot(
    polar=True, 
    fig=subfigs[0], in_parentheses='BB',
    add_cbar=True
)
subfigs[0].legend(loc=1, bbox_to_anchor=(1,1.15), fontsize='small')

## Plot for `orientsingle_boot`
orientsingle_boot.plot(
    fig=subfigs[1], in_parentheses='BB',
)
subfigs[1].legend(loc=1, bbox_to_anchor=(1,1.15), fontsize='small')

## Show or save the figure
fig.savefig()
plt.show()

Multiple stations

The example uses multiple stations whose names are stationAX.

from azimpy import OrientAnalysis

stationList = ['stationA1','stationA2','stationA3','stationA4']

## Channeltable including above stations' info
df_chtbl = read_chtbl('/path/to/channeltable.txt')
df_chtbl = df_chtbl.query('comp.str.endswith("U")')

## Init OrientAnalysis for circular statistics
oa_raw = OrientAnalysis(
    if_selection=False,  # w/o bootstrap analysis
    df_chtbl=df_chtbl, 
    min_CC=min_CC, 
)
oa_boot = OrientAnalysis(
    if_selection=True,  # perform bootstrap analysis
    df_chtbl=df_chtbl, 
    min_CC=min_CC, alpha_CI=alpha_CI, 
    bootstrap_iteration=bootstrap_iteration, 
)

for stationName in stationList:
    period = df_chtbl.at[stationName,'period']
    df_orient = pd.read_pickle(
        f'/path/to/output/{stationName}/{stationName}_020_040.pickle'
    )
    ## Add the dataframe in `oa_raw`
    ## This is actually passed to `OrientSingle`
    oa_raw.add_station(
        df_orient, stationName, 
        period=period
    )
    ## Add the dataframe in `oa_boot`
    oa_boot.add_station(
        df_orient, stationName, 
        period=period
    )
  • Plot the results using matplotlib.pyplot
    • Original results w/o bootstrap resampling
    fig = oa_raw.plot()
    
    • Results of bootstrap analysis
    fig = oa_boot.plot()
    

Note

  • SAC format is only supported, but you may use some other formats.
  • The observed data files must be located in one directory, where OrientOBS.find_stream() will try to search for necessary input files. No waveform data in websites and repository are available in this package at this moment.
  • The author has tested this package in Linux environments (CentOS 7 and WSL Ubuntu 20.04), so it might be incompatible when installed in Windows.
  • rpy2 is an optional wrapper to run circular in R language, which performs the Kuiper test.

References

Acknowledgments

This package makes use of ObsPy v1.3.0 for FDSN web client services and processing seismograms.

License

This project is licensed under the MIT License, see the LICENSE for details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

AzimPy-0.2.0.tar.gz (26.7 kB view details)

Uploaded Source

Built Distribution

AzimPy-0.2.0-py3-none-any.whl (33.6 kB view details)

Uploaded Python 3

File details

Details for the file AzimPy-0.2.0.tar.gz.

File metadata

  • Download URL: AzimPy-0.2.0.tar.gz
  • Upload date:
  • Size: 26.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.13

File hashes

Hashes for AzimPy-0.2.0.tar.gz
Algorithm Hash digest
SHA256 496079bddaef77f17efc2036faab4ba27e6d85b0530c6349a07425e215aeb4c4
MD5 5d2a8a0d26eb47d1540c8865b3db40fc
BLAKE2b-256 2ba537bc6876aaaa358c07ba9938f7ca02aa9e0efcfd0f16ad1437d7f6f77cb5

See more details on using hashes here.

File details

Details for the file AzimPy-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: AzimPy-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 33.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.28.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.13

File hashes

Hashes for AzimPy-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 97d9aa4aa6de14f9500bd9d35f8818faa20aeda5d74ffec35be351037bdf8d4f
MD5 50e735ea9364483fa8e462a6ab090f51
BLAKE2b-256 c601488e5684b00e02f99ed0b74e4a7c7d7c362c0c8d0e05bbf2cac31613e817

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page