Skip to main content

Convenient Filesystem interface to Azure Data-lake Store

Project description

https://travis-ci.org/Azure/azure-data-lake-store-python.svg?branch=dev

azure-datalake-store is a file-system management system in python for the Azure Data-Lake Store.

To install from source instead of pip (for local testing and development):

> pip install -r dev_requirements.txt
> python setup.py develop

To run tests, you are required to set the following environment variables: azure_tenant_id, azure_username, azure_password, azure_data_lake_store_name

To play with the code, here is a starting point:

from azure.datalake.store import core, lib, multithread
token = lib.auth(tenant_id, username, password)
adl = core.AzureDLFileSystem(store_name, token)

# typical operations
adl.ls('')
adl.ls('tmp/', detail=True)
adl.cat('littlefile')
adl.head('gdelt20150827.csv')

# file-like object
with adl.open('gdelt20150827.csv', blocksize=2**20) as f:
    print(f.readline())
    print(f.readline())
    print(f.readline())
    # could have passed f to any function requiring a file object:
    # pandas.read_csv(f)

with adl.open('anewfile', 'wb') as f:
    # data is written on flush/close, or when buffer is bigger than
    # blocksize
    f.write(b'important data')

adl.du('anewfile')

# recursively download the whole directory tree with 5 threads and
# 16MB chunks
multithread.ADLDownloader(adl, "", 'my_temp_dir', 5, 2**24)

To interact with the API at a higher-level, you can use the provided command-line interface in “azure/datalake/store/cli.py”. You will need to set the appropriate environment variables as described above to connect to the Azure Data Lake Store.

To start the CLI in interactive mode, run “python azure/datalake/store/cli.py” and then type “help” to see all available commands (similiar to Unix utilities):

> python azure/datalake/store/cli.py
azure> help

Documented commands (type help <topic>):
========================================
cat    chmod  close  du      get   help  ls     mv   quit  rmdir  touch
chgrp  chown  df     exists  head  info  mkdir  put  rm    tail

azure>

While still in interactive mode, you can run “ls -l” to list the entries in the home directory (“help ls” will show the command’s usage details). If you’re not familiar with the Unix/Linux “ls” command, the columns represent 1) permissions, 2) file owner, 3) file group, 4) file size, 5-7) file’s modification time, and 8) file name.

> python azure/datalake/store/cli.py
azure> ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
azure> ls -l --human-readable
drwxrwx--- 0123abcd 0123abcd   0B Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1M Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd  36B Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd   0B Aug 03 13:46 tmp
azure>

To download a remote file, run “get remote-file [local-file]”. The second argument, “local-file”, is optional. If not provided, the local file will be named after the remote file minus the directory path.

> python azure/datalake/store/cli.py
azure> ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
azure> get xyz.csv
2016-08-04 18:57:48,603 - ADLFS - DEBUG - Creating empty file xyz.csv
2016-08-04 18:57:48,604 - ADLFS - DEBUG - Fetch: xyz.csv, 0-36
2016-08-04 18:57:49,726 - ADLFS - DEBUG - Downloaded to xyz.csv, byte offset 0
2016-08-04 18:57:49,734 - ADLFS - DEBUG - File downloaded (xyz.csv -> xyz.csv)
azure>

It is also possible to run in command-line mode, allowing any available command to be executed separately without remaining in the interpreter.

For example, listing the entries in the home directory:

> python azure/datalake/store/cli.py ls -l
drwxrwx--- 0123abcd 0123abcd         0 Aug 02 12:44 azure1
-rwxrwx--- 0123abcd 0123abcd   1048576 Jul 25 18:33 abc.csv
-r-xr-xr-x 0123abcd 0123abcd        36 Jul 22 18:32 xyz.csv
drwxrwx--- 0123abcd 0123abcd         0 Aug 03 13:46 tmp
>

Also, downloading a remote file:

> python azure/datalake/store/cli.py get xyz.csv
2016-08-04 18:57:48,603 - ADLFS - DEBUG - Creating empty file xyz.csv
2016-08-04 18:57:48,604 - ADLFS - DEBUG - Fetch: xyz.csv, 0-36
2016-08-04 18:57:49,726 - ADLFS - DEBUG - Downloaded to xyz.csv, byte offset 0
2016-08-04 18:57:49,734 - ADLFS - DEBUG - File downloaded (xyz.csv -> xyz.csv)
>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-datalake-store-0.0.1.zip (42.2 kB view hashes)

Uploaded Source

Built Distribution

azure_datalake_store-0.0.1-py2.py3-none-any.whl (35.6 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page