Kusto Ingestion Tools (Kit)
Project description
Kusto Ingestion Tools (Kit)
azure-kusto-ingestion-tools a simple toolkit to help with ingestions, avialble here
Purpose
Make ingestion simpler (at least for common cases). After creating an ADX (Kusto) cluster via Azure portal, we want to explore / visualize some data. When evaluating data stores / tools we usually want to just POC capabilities and move fast.
That is what this project was created for. It contains features to support:
- Data source schema inference (csv / kusto/ ...)
- Common ingestion scenarios (from file /entire folder / ...)
- Other helpful utilities (kql generator, ...)
TOC
Concept
Given a data source, usually the workflow would consist of:
- Describing the data source.
- Preparing the target data store (in our case, Kusto)
- Mapping Source to Target
- Loading the data
- Optional : Automation / Moving to Production
Install
Minimum Requirements
- Python 3.7+
- See setup.py for dependencies
Pip
To install via the Python Package Index (PyPI), type:
pip install azure-kusto-ingestion-tools
This will expose a new cli commands : kit --help
Usage
Basic
kit ingest -d /path/to/data/imdb -h mycluster.westus
The following command will try to ingest all files in /path/to/data/imdb
(non-recursive) using type inference.
<!>NOTICE<!>: without providing any other arguments, this command is extremely opinionated, and will assume the following:
Options
Auth
Every command that needs to authenticate against kusto, will require authentication arguemnts.
By default, will try to grab token from azure cli
Other options are:
App:
kit [command] -app {app_id}:{app_secret}
User:
kit [command] -user {user_id}:{password}
Naming
- database will be set to is the dir in which data sits, so
/path/to/data/imdb
will look for, and create if missing, a database namedimdb
.
If more control is need, try--database
- tables are actual file names, so
/path/to/data/imdb/aka_name.csv
will look for, and create if missing, a table namedaka_name
.
This can be tweaked by making sure data is split into folder, where any folder would be a table.
This recursive mode assumes that the table structure is the same for all files.
Files
Database Schema file
This is a simple way to describe a database.
This can be used to describe a db schema using plain JSON format, and thus easily copy entire database schemas.
{
"name": "imdb",
"tables": [{
"name": "aka_name",
"columns": [{
"dtype": "int",
"name": "id",
"index": 0
}, {
"dtype": "int",
"name": "person_id",
"index": 1
}, {
"dtype": "string",
"name": "name",
"index": 2
}, {
"dtype": "string",
"name": "imdb_index",
"index": 3
}, {
"dtype": "string",
"name": "name_pcode_cf",
"index": 4
}, {
"dtype": "string",
"name": "name_pcode_nf",
"index": 5
}, {
"dtype": "string",
"name": "surname_pcode",
"index": 6
}, {
"dtype": "string",
"name": "md5sum",
"index": 7
}]
},
...
]
}
From an existing cluster
kit schema create -h 'https://mycluster.kusto.windows.net' -db imdb > imdb_schema.json
From an sql file
kit schema create -sql imdb.sql > schema.json
From a folder with raw data
kit schema create -d path/to/dir > schema.json
More to come...
Manifest file
A file to describe the details of an ingestion which can be run later
{
"databases": [ "same as schema.json" ],
"mappings": [{
"name": "aka_name_from_csv",
"columns": [{
"source": {
"index": 0,
"data_type": "str"
},
"target": {
"index": 0,
"data_type": "str"
}
}]
}],
"operations": [{
"database": "imdb",
"sources": [{
"files": ["1.csv", "...", "99.csv"],
"mapping": "aka_name_from_csv"
}],
"target": [ "aka_name" ]
}]
}
Examples
Example 1 : Ingest IMDB Dataset , CSV files (used in Join Order Benchmark)
One useful scenario would be to load an entire existing dataset into Kusto.
Let's take for example the Join Order Benchmark used in the paper How good are query optimizers really?.
1. Copy files to local dir:
Download from Azure Storage
wget https://imdb2013dataset.blob.core.windows.net/data/imdb.tgz --no-check-certificate
or
curl https://imdb2013dataset.blob.core.windows.net/data/imdb.tgz --output imdb.tgz
Original Files are available, but are malformed (don't conform to https://tools.ietf.org/html/rfc4180).
One can fix them using tools like xsv,
but this is we shall leave error handling for another section.
2. Extract files:
tar -xvzf imdb.tgz
3. Download SQL Create commands:
wget https://raw.githubusercontent.com/gregrahn/join-order-benchmark/master/schema.sql -O imdb.sql --no-check-certificate
or
curl https://raw.githubusercontent.com/gregrahn/join-order-benchmark/master/schema.sql --output imdb.sql
4. Create schema from sql statement
kit schema create -sql schema.sql > imdb_schema.json
5. Apply schema on cluster
Assuming we already have a cluster, and we are signed in using az cli, we can just apply the schema on a database we choose:
kit schema apply -f imdb_schema.json -h mycluster.westus -db imdb
6. Ingest data from local files
kit ingest -d . --pattern "*.csv" -h mycluster.westus -db imdb
7. Query
Using the Azure portal, you can now easily login and query your data.
You can always make sure that data was loaded by comparing the source line count with target column count:
xsv count aka_name.csv
- should show 901343 rows
or
wc -l aka_name.csv
- should show 901343 rows
Query from kusto should show the same:
kit count --table aka_name -h mycluster.westus -db imdb
- should show 901343
And take a peek at the data:
kit peek --table aka_name -n 10 -h mycluster.westus -db imdb
Example 2 : Ingest Kaggle ML Datasets, CSV and JSON
Kaggale has tons of interesting dataset for ML/AI purposes.
Let's try and ingest some:
https://www.kaggle.com/mlg-ulb/creditcardfraud/ https://www.kaggle.com/START-UMD/gtd/
Uploaded to our azure storage for convenience:
wget https://imdb2013dataset.blob.core.windows.net/data/creditcard.csv.gz --no-check-certificate
wget https://imdb2013dataset.blob.core.windows.net/data/globalterrorism.csv.gz --no-check-certificate
wget https://imdb2013dataset.blob.core.windows.net/data/arxivData.csv.gz --no-check-certificate
or
curl https://imdb2013dataset.blob.core.windows.net/data/creditcard.csv.gz --output creditcard.csv.gz
curl https://imdb2013dataset.blob.core.windows.net/data/globalterrorism.csv.gz --output globalterrorism.csv.gz
curl https://imdb2013dataset.blob.core.windows.net/data/arxivData.json.gz --output arxivData.json.gz
Once downloaded and unzipped, same idea, only this time files contain headers, so schema is infered:
kit ingest -d . -h mycluster.westus -db ml --headers
Example 3 : Complex nested JSON mappings
Let's look at a more advance use case:
wget https://imdb2013dataset.blob.core.windows.net/data/demo.json --no-check-certificate
or
curl https://imdb2013dataset.blob.core.windows.net/data/demo.json --output demo.json
Say our data is a json lines files, where each item looks like:
{"header":{"time":"24-Aug-18 09:42:15", "id":"0944f542-a637-411b-94dd-8874992d6ebc", "api_version":"v2"}, "payload":{"data":"NEEUGQSPIPKDPQPIVFE", "user":"owild@fabrikam.com"}}
It seems that we have a nested object.
Because we are not sure what will happen, let's dry run.
Let's try and --dry
run an ingestion with --object-depth 2
.
kit ingest -f demo.json --object-depth 2 -h mycluster.westus -db ml --dry > manifest.json
This produces the following manifest.json
which contains the operations to be executed.
{
"databases": [
{
"name": "ml",
"tables": []
}
],
"mappings": [
{
"name": "demo_from_json",
"columns": [
{
"source": {
"dtype": "string",
"name": "header.time",
"index": null
},
"target": {
"dtype": "string",
"name": "header.time",
"index": null
}
},
{
"source": {
"dtype": "string",
"name": "header.id",
"index": null
},
"target": {
"dtype": "string",
"name": "header.id",
"index": null
}
},
{
"source": {
"dtype": "string",
"name": "header.api_version",
"index": null
},
"target": {
"dtype": "string",
"name": "header.api_version",
"index": null
}
},
{
"source": {
"dtype": "string",
"name": "payload.data",
"index": null
},
"target": {
"dtype": "string",
"name": "payload.data",
"index": null
}
},
{
"source": {
"dtype": "string",
"name": "payload.user",
"index": null
},
"target": {
"dtype": "string",
"name": "payload.user",
"index": null
}
}
]
}
],
"operations": [
{
"database": "ml",
"sources": [
{
"files": [
"C:\\Users\\dadubovs\\temp\\ml_datasets\\demo.json"
],
"mapping": "demo_from_json",
"options": {},
"data_format": "json"
}
],
"target": "demo"
}
]
}
Now, let's say that we don't need the id
field, we can edit the mapping and save it.
If we are still unsure, and want to get a better understanding are the commands that will be created, we can inspect the kql
kit kql -m manifest.json
Which should output something like:
// Table Creation Commands:
.create table demo (['header.time']:string,['header.api_version']:string,['payload.data']:string,['payload.user']:string)
// Ingestion Mapping Creation Commands:
.create table demo ingestion json mapping "demo_from_json" '[{"column":"header.time","path":"$.header.time","datatype":"string"},{"column":"header.api_version","path":"$.header.api_version","datatype":"string"},{"column":"payload.data","path":"$.payload.data","datatype":"string"},{"column":"payload.user","path":"$.payload.user","datatype":"string"}]'
Once we are ready, we can resume our ingestion based on the manifest
kit ingest -m manifest.json -h mycluster.westus
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file azure-kusto-ingestion-tools-0.3.1.tar.gz
.
File metadata
- Download URL: azure-kusto-ingestion-tools-0.3.1.tar.gz
- Upload date:
- Size: 24.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fee1bb71cf9f9a9421ea16fd216b78c37889b644100166d7bfa1b20aa982afc8 |
|
MD5 | fa99f27048706232cd482c951900e009 |
|
BLAKE2b-256 | b072f2f6844c77de934ba06cbabe6df4022f2653f224f5540238f1c7674a4ce4 |