Skip to main content

Logging handlers to send logs to Microsoft Azure Storage

Project description

http://img.shields.io/pypi/l/azure-storage-logging.svg?style=flat

azure-storage-logging_table is a fork from azure-storage-logging out of the author’s necesity to send output from the standard Python logging APIs to Microsoft Azure Storage Tables. Due to the original module by Michiya Takahashi being outdated, it modifies it to restore functionality to the TableStorageHandler for logging. In the future, more functionalities may be restored. But on this current version only the TableStorageHandler is usable.

Dependencies

  • azure-data-tables 12.4.0

Installation

Install the package via pip:

pip install azure-storage-logging_table

Usage

The module azure_storage_logging.handlers in the package contains the following logging handler classes. Each of them uses a different type of Microsoft Azure Storage to send its output to. They all are subclasses of the standard Python logging handler classes, so you can make use of them in the standard ways of Python logging configuration.

In addition to the standard formats for logging, the special format %(hostname)s is also available in your message formatter for the handlers. The format is introduced for ease of identifying the source of log messages which come from many computers and go to the same storage.

TableStorageHandler

The TableStorageHandler class is a subclass of logging.Handler class, and it sends log messages to Azure table storage and store them as entities in the specified table.

The handler puts a formatted log message from applications in the message property of a table entity along with some system-defined properties (PartitionKey, RowKey, and Timestamp) like this:

PartitionKey

RowKey

Timestamp

message

XXXXX

XXXXXXXXX

YYYY-MM-DD …

log message

XXXXX

XXXXXXXXX

YYYY-MM-DD …

log message

XXXXX

XXXXXXXXX

YYYY-MM-DD …

log message

  • class azure_storage_logging.handlers.TableStorageHandler(account_name=None, account_key=None, protocol=’https’, table=’logs’, batch_size=0, extra_properties=None, partition_key_formatter=None, row_key_formatter=None, is_emulated=False)

    Returns a new instance of the TableStorageHandler class. The instance is initialized with the name and the key of your Azure Storage account and some optional parameters.

    The table specifies the name of the table that stores log messages. A new table will be created if it doesn’t exist. The table name must conform to the naming convention for Azure Storage table, see the naming convention for tables for more details.

    The protocol specifies the protocol to transfer data between Azure Storage and your application, http and https are supported.

    You can specify the batch_size in an integer if you want to use batch transaction when creating new log entities. If the batch_size is greater than 1, all new log entities will be transferred to the table at a time when the number of new log messages reaches the batch_size. Otherwise, a new log entity will be transferred to the table every time a logging is performed. The batch_size must be up to 100 (maximum number of entities in a batch transaction for Azure Storage table).

    The extra_properties accepts a sequence of the formats for logging. The handler-specific one %(hostname)s is also acceptable. The handler assigns an entity property for every format specified in extra_properties. Here is an example of using extra properties:

    import logging
    from azure_storage_logging.handlers import TableStorageHandler
    
    # configure the handler and add it to the logger
    logger = logging.getLogger('example')
    handler = TableStorageHandler(conn_str='myConnectionString', table='myTableName',
                                  extra_properties=('%(hostname)s',
                                                    '%(levelname)s'))
    logger.addHandler(handler)
    
    # output log messages
    logger.info('info message')
    logger.warning('warning message')
    logger.error('error message')

    And it will create the log entities, that have the extra properties in addition to the regular property message, into the table like this:

    PartitionKey

    RowKey

    Timestamp

    hostname

    levelname

    message

    XXXXX

    XXXXXXXXX

    YYYY-MM-DD …

    myhost

    INFO

    info message

    XXXXX

    XXXXXXXXX

    YYYY-MM-DD …

    myhost

    WARNING

    warn message

    XXXXX

    XXXXXXXXX

    YYYY-MM-DD …

    myhost

    ERROR

    error message

    You can specify an instance of your custom logging.Formatters for the partition_key_formatter or the row_key_formatter if you want to implement your own keys for the table. The default formatters will be used for partition keys and row keys if no custom formatter for them is given to the handler. The default values for partition keys are provided by the format %(asctime)s and the date format %Y%m%d%H%M (provides a unique value per minute). The default values for row keys are provided by the format %(asctime)s%(msecs)03d-%(hostname)s-%(process)d-%(rowno)02d and the date format %Y%m%d%H%M%S.

    Note that the format %(rowno)d is a handler-specific one only available for row keys. It would be formatted to a sequential and unique number in a batch that starts from 0. The format is introduced to avoid collision of row keys generated in a batch, and it would always be formatted to 0 if you don’t use batch transaction for logging to the table.

  • setPartitionKeyFormatter(fmt)

    Sets the handler’s formatter for partition keys to fmt.

  • setRowKeyFormatter(fmt)

    Sets the handler’s formatter for row keys to fmt.

Example

Here is an example of the configurations and the logging that uses three different types of storage from the logger:

LOGGING = {
    'version': 1,
    'formatters': {
        'simple': {
            'format': '%(asctime)s %(message)s',
        },
        'verbose': {
            'format': '%(asctime)s %(levelname)s %(hostname)s %(process)d %(message)s',
        },
        # this is the same as the default, so you can skip configuring it
        'partition_key': {
            'format': '%(asctime)s',
            'datefmt': '%Y%m%d%H%M',
        },
        # this is the same as the default, so you can skip configuring it
        'row_key': {
            'format': '%(asctime)s%(msecs)03d-%(hostname)s-%(process)d-%(rowno)02d',
            'datefmt': '%Y%m%d%H%M%S',
        },
    },
    'handlers': {
        'table': {
            'conn_str': DefaultEndpointsProtocol=https;AccountName=test;AccountKey=akey==;EndpointSuffix=core.windows.net'
            'protocol': 'https',
            'table': 'logs',
            'level': 'INFO',
            'class': 'azure_storage_logging.handlers.TableStorageHandler',
            'formatter': 'simple',
            'extra_properties': ['%(hostname)s', '%(levelname)s'],
            'partition_key_formatter': 'cfg://formatters.partition_key',
            'row_key_formatter': 'cfg://formatters.row_key',
        },
    },
    'loggers': {
        'example': {
            'handlers': ['table'],
            'level': 'DEBUG',
        },
    }
}

import logging
from logging.config import dictConfig

dictConfig(LOGGING)
logger = logging.getLogger('example')
logger.debug('debug message')
logger.info('info message')
logger.warning('warning message')
logger.error('error message')
logger.critical('critical message')

Notice

  • Set is_emulated to True at initialization of the logging handlers if you want to use this package with Azure storage emulator.

License

Apache License 2.0

Credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

azure-storage-logging_updated-0.7.0.tar.gz (10.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page