Skip to main content

Azure Machine Learning Model Monitoring SDK V2

Project description

Azure Machine Learning Model Monitoring SDK

The azureml-ai-monitoring package provides an SDK to enable Model Data Collector (MDC) for custom logging allows customers to collect data at arbitrary points in their data pre-processing pipeline. Customers can leverage SDK in score.py to log data to desired sink before, during, and after any data transformations.

Start by importing the azureml-ai-monitoring package in score.py

import pandas as pd
import json
from azureml.ai.monitoring import Collector

def init():
  global inputs_collector, outputs_collector

  # instantiate collectors with appropriate names, make sure align with deployment spec
  inputs_collector = Collector(name='model_inputs')                    
  outputs_collector = Collector(name='model_outputs')

def run(data): 
  # json data: { "data" : {  "col1": [1,2,3], "col2": [2,3,4] } }
  pdf_data = preprocess(json.loads(data))
  
  # tabular data: {  "col1": [1,2,3], "col2": [2,3,4] }
  input_df = pd.DataFrame(pdf_data)

  # collect inputs data, store correlation_context
  context = inputs_collector.collect(input_df)

  # perform scoring with pandas Dataframe, return value is also pandas Dataframe
  output_df = predict(input_df) 

  # collect outputs data, pass in correlation_context so inputs and outputs data can be correlated later
  outputs_collector.collect(output_df, context)
  
  return output_df.to_dict()
  
def preprocess(json_data):
  # preprocess the payload to ensure it can be converted to pandas DataFrame
  return json_data["data"]

def predict(input_df):
  # process input and return with outputs
  ...
  
  return output_df

Create environment with base image mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04 and conda dependencies, then build the environment.

channels:
  - conda-forge
dependencies:
  - python=3.8
  - numpy=1.23.5
  - pandas=1.5.2
  - pip=22.3.1
  - pip:
      - azureml-defaults==1.38.0
      - requests==2.28.1
      - azureml-ai-monitoring~=0.1.0b1
name: model-env

Create deployment with custom logging enabled (model_inputs and model_outputs are enabled) and the environment you just built, please update the yaml according to your scenario.

#source ../configs/model-data-collector/data-storage-basic-OnlineDeployment.YAML
$schema: http://azureml/sdk-2-0/OnlineDeployment.json

endpoint_name: my_endpoint #unchanged
name: blue #unchanged
model: azureml:my-model-m1:1 #azureml:models/<name>:<version> #unchanged
environment: azureml:custom-logging-env:1 #unchanged
data_collector:
  collections:
    model_inputs:
      enabled: true
    model_outputs:
      enabled: true

By default, we'll raise the exception when there is unexpected behavior (like custom logging is not enabled, collection is not enabled, not supported data type), if you want a configurable on_error, you can do it with

collector = Collector(name="inputs", on_error=lambda e: logging.info("ex:{}".format(e)))

Change Log

v0.1.0b1 (2023.4.25)

New Features

  • Support model data collection for pandas Dataframe.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

azureml_ai_monitoring-0.1.0b1-py3-none-any.whl (17.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page