AzureML integration with NGC
Project description
AzureML NVIDIA GPU Cloud tools
The code contained within this repository allows pulling the images from NVIDIA GPU Cloud (NGC).
Installation
To install this package type
pip install azureml-ngc-tools
Alternatively, clone this repository and use python to install.
git clone https://github.com/.../azureml-ngc-tools.git
python setup.py install
Configuration
Two configuration files are required:
- A
json
file that contains the parameters to log in to AzureML Workspace and create Compute Target. All the parameters shown below need to be provided.
{
"azureml_user":
{
"subscription_id": "<YOUR-SUBSCRIPTION-ID>",
"resource_group": "<YOUR-RESOURCE-GROUP>",
"workspace_name": "<YOUR-WORKSPACE-NAME>",
"telemetry_opt_out": <true|false>
},
"aml_compute":
{
"ct_name":"<NAME-OF-YOUR-COMPUTE-TARGET>",
"exp_name":"<NAME-OF-YOUR-EXPERIMENT>",
"vm_name":"<SIZE-OF-THE-AZUREML-VM>",
"admin_name":"<ADMINISTRATOR-NAME>",
"min_nodes":<MINIMUM-NUMBER-OF-NODES>,
"max_nodes":<MAXIMUM-NUMBER-OF-NODES>,
"vm_priority": "<dedicated|lowpriority>",
"idle_seconds_before_scaledown":<NUMBER-OF-SECONDS-TO-SCALE-DOWN>,
"python_interpreter":"<PATH-TO-PYTHON-INTERPRETER>",
"conda_packages":[<LIST-OF-ADDITIONAL-CONDA-OR-PIP-PACKAGES>],
"environment_name":"<NAME-OF-ENVIRONMENT>",
"docker_enabled":<true|false>,
"user_managed_dependencies":<true|false>,
"jupyter_port":<JUPYTER-PORT-FOR-FORWARDING>
}
}
An example (fictitious):
{
"azureml_user":
{
"subscription_id": "ef4455fa-3e35-433c-a410-76d7a8a9e793",
"resource_group": "sample-rg",
"workspace_name": "sample-ws",
"telemetry_opt_out": false
},
"aml_compute":
{
"ct_name":"sample-ct",
"exp_name":"sample-exp",
"vm_name":"Standard_NC6s_v3",
"admin_name": "sample",
"min_nodes":0,
"max_nodes":1,
"vm_priority": "dedicated",
"idle_seconds_before_scaledown":300,
"python_interpreter":"/usr/bin/python",
"conda_packages":["matplotlib","jupyterlab"],
"environment_name":"sample_env",
"docker_enabled":true,
"user_managed_dependencies":true,
"jupyter_port":9000
}
}
- A
json
file that contains information about the content you want to download from NGC. Thebase_dockerfile
parameter shown below needs to be provided.
{
"base_dockerfile":"<URI-TO-NGC-CONTAINER>",
"additional_content": {
"download_content": false,
"unzip_content": false,
"upload_content": false,
"list":[
{
"url": <URL_TO_CONTENT>,
"filename": <FILENAME_TO_SAVE_TO>,
"localdirectory": <DIRECTORY_TO_EXTRACT_CONTENTS>,
"computedirectory": <DIRECTORY_TO_UPLOAD_CONTENTS>,
"zipped": <false|true>
},
...
]
}
}
An example:
{
"base_dockerfile":"nvcr.io/nvidia/clara-train-sdk:v3.0",
"additional_content": {
"download_content": true,
"unzip_content": true,
"upload_content": true,
"list":[
{
"url":"https://api.ngc.nvidia.com/v2/resources/nvidia/med/getting_started/versions/1/zip",
"filename":"clarasdk.zip",
"localdirectory":"clara",
"computedirectory":"clara",
"zipped":true
}
]
}
}
Usage
Assuming that the AzureML config file is user_config.json
and the NGC config file is ngc_app.json
, and both of the files are located in the same folder, to create the cluster run the following code
azureml-ngc-tools --login user_config.json --app ngc_app.json
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file azureml_ngc_tools-1.5.1.tar.gz
.
File metadata
- Download URL: azureml_ngc_tools-1.5.1.tar.gz
- Upload date:
- Size: 40.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7a3dd39e2b225ca623c1d5a9fdb98a5ebe47bafe647fb31256e6069fa11c55f |
|
MD5 | e6b5ab115eaa356fabe863e4dce7e28b |
|
BLAKE2b-256 | beefd239318060014ca7c1b9317e034eb9e55af31d8cc69933bb049aa0e3b699 |
File details
Details for the file azureml_ngc_tools-1.5.1-py3-none-any.whl
.
File metadata
- Download URL: azureml_ngc_tools-1.5.1-py3-none-any.whl
- Upload date:
- Size: 21.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd97924a9781a7b724a31e881ba912f35b1fe41b51d162a1a1693e7fc98d2b18 |
|
MD5 | c0756a2113d2559dc82643009d3cca1d |
|
BLAKE2b-256 | 278e00afcc9d4ea2fe7411c9fab7955e67b26811480a838ccd783bdc069c3cf4 |