Utility functions for BAAR developers
Project description
This Custom Library is specifically created for the developers/useres who use BAAR. Which is a product of Allied Media Inc. (www.alliedmedia.com)
Author:
Souvik Roy [sroy-2019]
Zhaoyu (Thomas) Xu [xuzhaoyu]
Dependencies:
pandas==1.0.3 or above numpy==1.18.4 or above
Additional Info:
The string structure that follows is a streamline structure that the developers/users follow throughout an automation workflow designed in BAAR:
"Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
Available functions and the examples are listed below:
-
read_convert(string), Output Data Type: list of dictionary Attributes: i. string: Input String, Data Type = String Input: "Column_1__=abc$$Column_2=def::Column_1=hello$$Column_2=__world" Output: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]
-
write_convert(input_list), Output Data Type: string Attributes: i. input_list: List that contains the Dictionaries of Data, Data Type = List Input: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}] Output: "Column_1__=abc$$Column_2=def::Column_1=hello$$Column_2=__world"
-
string_to_df(string, rename_cols, drop_dupes), Output Data Type: pandas DataFrame Attributes: i. string: Input String, Data Type = String ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {} iii.drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False Input: "Column_1__=abc$$Column_2=def::Column_1=hello$$Column_2=__world" Output: | Column_1 | Column_2
0 | abc | def 1 | hello | world
- df_to_string(input_df, rename_cols, drop_dupes), Output Data Type: string Attributes: i. input_df: Input DataFrame, Data Type = pandas DataFrame ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {} iii.drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False Input: | Column_1 | Column_2
0 | abc | def 1 | hello | world Output: "Column_1__=abc$$Column_2=def::Column_1=hello$$Column_2=__world"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file baarutil-1.0.0.tar.gz
.
File metadata
- Download URL: baarutil-1.0.0.tar.gz
- Upload date:
- Size: 3.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54c83eb1f7e4a269ce2fa87497929272afd38d115816ceea33e52e012c3630f3 |
|
MD5 | 6572360344e8b85be8f739946b5d4be9 |
|
BLAKE2b-256 | 26d1d3f453165a43709d7f881ac682894e93ffc74739e4756d37020c15c9d860 |
File details
Details for the file baarutil-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: baarutil-1.0.0-py3-none-any.whl
- Upload date:
- Size: 4.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f2088d8dda4e69b22ff8dfeb765cfeb5e8da74be6f99d0fd2a06861dd122ead2 |
|
MD5 | 5af812f6a46000da4f4f5402b7076c03 |
|
BLAKE2b-256 | 1183c59e9c4a8d82c8ba6408f4978d4a11d7a5dff6257cf01fe294d21ade2fd2 |