Skip to main content

Utility functions for BAAR developers

Project description

Baarutil

This Custom Library is specifically created for the developers/users who use BAAR. Which is a product of Allied Media Inc.

Authors:

Souvik Roy sroy-2019

Zhaoyu (Thomas) Xu xuzhaoyu

Additional Info:

The string structure that follows is a streamline structure that the developers/users follow throughout an automation workflow designed in BAAR:

"Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"

Available functions and the examples are listed below:

1. read_convert(string), Output Data Type: list of dictionary

Attributes:

i. string: Input String, Data Type = String

Input:  "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
Output: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]

2. write_convert(input_list), Output Data Type: string

Attributes:

i. input_list: List that contains the Dictionaries of Data, Data Type = List

Input:  [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]
Output: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"

3. string_to_df(string, rename_cols, drop_dupes), Output Data Type: pandas DataFrame

Attributes:

i. string: Input String, Data Type = String

ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}

iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False

Input:  "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"

Output:

Column_1 Column_2
abc def
hello world

4. df_to_string(input_df, rename_cols, drop_dupes), Output Data Type: string

Attributes:

i. input_df: Input DataFrame, Data Type = pandas DataFrame

ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}

iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False

Input:

Column_1 Column_2
abc def
hello world
Output: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"

5. df_to_listdict(input_df, rename_cols, drop_dupes), Output Data Type: list

Attributes:

i. input_df: Input DataFrame, Data Type = pandas DataFrame

ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}

iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False

Input:

Column_1 Column_2
abc def
hello world
Output: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]

6. decrypt_vault(encrypted_message, config_file), Output Data Type: string

Attributes:

i. encrypted_message: Encrypted Baar Vault Data, Data Type = string

ii. config_file: Keys, that needs to be provided by Allied Media.

This function can also be called from a Robot Framework Script by importing the baarutil library and using Decrypt Vault keyword. Upon initiation of this fuction, this will set the Log Level of the Robot Framework script to NONE for security reasons. The Developers have to use Set Log Level INFO in the robot script in order to restart the Log.

Input:  <<Encrypted Text>>
Output: <<Decrypted Text>>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baarutil-1.2.5.1.tar.gz (4.6 kB view details)

Uploaded Source

File details

Details for the file baarutil-1.2.5.1.tar.gz.

File metadata

  • Download URL: baarutil-1.2.5.1.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.8

File hashes

Hashes for baarutil-1.2.5.1.tar.gz
Algorithm Hash digest
SHA256 9ef25caa9c9a207054079c073c6e0eaac5ab14f97c97293ade70f0becbddcd23
MD5 9ff309e25d811d34eb8911e580a7a4fa
BLAKE2b-256 2df3278bf53ea9f4a4f39af173f4b1fa25e45c97dc4ea4c28dfb02e5d0af15b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page