Utility functions for BAAR developers
Project description
Baarutil
This Custom Library is specifically created for the developers/users who use BAAR. Which is a product of Allied Media Inc.
Authors:
Souvik Roy sroy-2019
Zhaoyu (Thomas) Xu xuzhaoyu
Additional Info:
The string structure that follows is a streamline structure that the developers/users follow throughout an automation workflow designed in BAAR:
"Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
Available functions and the examples are listed below:
1. read_convert(string), Output Data Type: list of dictionary
Attributes:
i. string: Input String, Data Type = String
Input: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
Output: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]
2. write_convert(input_list), Output Data Type: string
Attributes:
i. input_list: List that contains the Dictionaries of Data, Data Type = List
Input: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]
Output: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
3. string_to_df(string, rename_cols, drop_dupes), Output Data Type: pandas DataFrame
Attributes:
i. string: Input String, Data Type = String
ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}
iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False
Input: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
Output:
Column_1 | Column_2 |
---|---|
abc | def |
hello | world |
4. df_to_string(input_df, rename_cols, drop_dupes), Output Data Type: string
Attributes:
i. input_df: Input DataFrame, Data Type = pandas DataFrame
ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}
iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False
Input:
Column_1 | Column_2 |
---|---|
abc | def |
hello | world |
Output: "Column_1__=__abc__$$__Column_2__=__def__::__Column_1__=__hello__$$__Column_2__=__world"
5. df_to_listdict(input_df, rename_cols, drop_dupes), Output Data Type: list
Attributes:
i. input_df: Input DataFrame, Data Type = pandas DataFrame
ii. rename_cols: Dictionary that contains old column names and new column names mapping, Data Type = Dictionary, Default Value = {}
iii. drop_dupes: Drop duplicate rows from the final dataframe, Data Type = Bool, Default Value = False
Input:
Column_1 | Column_2 |
---|---|
abc | def |
hello | world |
Output: [{"Column_1":"abc", "Column_2":"def"}, {"Column_1":"hello", "Column_2":"world"}]
6. decrypt_vault(encrypted_message, config_file), Output Data Type: string
Attributes:
i. encrypted_message: Encrypted Baar Vault Data, Data Type = string
ii. config_file: Keys, that needs to be provided by Allied Media.
This function can also be called from a Robot Framework Script by importing the baarutil library and using Decrypt Vault keyword. Upon initiation of this fuction, this will set the Log Level of the Robot Framework script to NONE for security reasons. The Developers have to use Set Log Level INFO in the robot script in order to restart the Log.
Input: <<Encrypted Text>>
Output: <<Decrypted Text>>
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file baarutil-1.2.6.tar.gz
.
File metadata
- Download URL: baarutil-1.2.6.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e97c200e89034aca42d49df61c1f97dabad24e5eb6f39a68e47623cf93482220 |
|
MD5 | c126d09577ee2ca5c745925996e9fd92 |
|
BLAKE2b-256 | 3d5316bdbe9b62f3be3be752cc0b14c2288a1792ba2bf7a1db49f78a0c992f15 |