Skip to main content

BAyesian Beta-Binomial AB testing (BABBAB), is an implementation

Project description

babbab

The two purposes of babbab are:

  • To be the simplest tool for Data Analysts/Statisticians to analyze AB tests.
  • To return the simplest results for Stakeholders/Non-Statisticians to understand.

babbab an acronym of BAyesian Beta-Binomial AB testing (BABBAB), but it's spelled in lowercase (babbab) because it doesn't like shouting.

Install

This should work in vanilla Python +3.8.

pip install babbab

A quick example

Lets assume we are testing changing the background color of our app from grey to green. Lets say we sell subscriptions to a paper magazine. We want to know if changing the background color will increase sales. To do so, we assign 50% of our users to the new app design with a green background (The Variant Group), while other 50% stay in the old grey design (the Control group). We managed to pull these 4 numbers out our tracking into Python:

control_sold_subscriptions = 200 
control_users = 40316
variant_sold_subscriptions = 250
variant_users = 40567

Because babbab is awesome you can just run:

import babbab as bab

plot, statement, trace = bab.quick_analysis(control_sold_subscriptions, control_users, variant_sold_subscriptions, variant_users)

And get everything you need.

  1. In plot you will find a matplotlib figure. You can change the title and labels in the quick_analysis function.
  2. In statement, you will get a string that is intended to be interpreted verbatim by Non-Statisticians.
  3. In trace, you will get an arviz InferenceData object, in case you want to explore the run further.

In the signature of quick_analysis you can configure the statistics and the aesthetics of most of this.

Motivation

AB tests (or controlled experiments) are an increasingly popular way of incrementally improving websites, desktop, and mobile apps. At Multilayer we have analyzed probably hundreds, with a miriad of different tools and statistical methodologies.

In our experience, when encountered with the typical AB test conducted in a website or mobile app, the biggest problem companies encounter is around interpreting the results. There are plenty of statistical libraries out there that do AB testing right (babbab actually uses PyMC in the background). However, sharing statistics (like p-values) with non-statisticians (and sometimes even with Statisticians) can lead to confusion and misuse of results.

What babbab covers is the "last mile" of the analysis: Communicating the results for them to be actionable.

In other words - Why babbab is awesome

  • Get 4 numbers in, get a statistically valid statement you can repeat to your manager and a plot you can understand.
  • Get 4 numbers in + some labels, and you will get the above and a plot you can share and a statement you can C&P in the company chat.
  • Add a bit more work, and you have your own custom built AB testing dashboard/tool.

Stop worrying about your peers and yourself misinterpreting stats.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

babbab-0.3.0.tar.gz (58.6 kB view hashes)

Uploaded Source

Built Distribution

babbab-0.3.0-py2.py3-none-any.whl (6.1 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page