Skip to main content

Code used in https://arxiv.org/abs/2006.05532

Project description

Masks and COVID-19: a causal framework for imputing value to public-health interventions

Code to reproduce Masks and COVID-19.

This is a refactored version of the original code.

Install

pip install babino2020masks

How to use

Gather data

ny = API(api_settings['NYS'][:2], **api_settings['NYS'][2])
df = ny.get_all_data_statewide()
ax = plot_data_and_fit(df, 'Date', 'Odds', None, None, None, figsize=(10, 7))
ax.set_title(f'{df.tail(1).Date[0]:%B %d, %Y}, Positivity Odds:{df.tail(1).Odds[0]:2.3}');

png

Fit the model

sdf = df.loc[df.Date<='15-05-2020'].copy()
lics = LassoICSelector(sdf['Odds'], 'bic')
lics.fit_best_alpha()

Positivity Odds in NYS

sdf['Fit'], sdf['Odds_l'], sdf['Odds_u'] = lics.odds_hat_l_u()
ax = plot_data_and_fit(sdf, 'Date', 'Odds', 'Fit', 'Odds_l', 'Odds_u', figsize=(10, 7))

png

Instantaneous reproduction number, $R_t$

sdf['R'], sdf['Rl'], sdf['Ru'] = lics.rt()
ax = plot_data_and_fit(sdf, 'Date', None, 'R', 'Rl', 'Ru', figsize=(10, 7), logy=False, palette=[colorblind[1],colorblind[1]])

png

Counterfactual Scenario without Masks

sdf['Cf. Odds'], sdf['cf_odds_l'], sdf['cf_odds_u'] = lics.counterfactual()
ax = plot_data_and_fit(sdf, 'Date', 'Odds', 'Fit', 'Odds_l', 'Odds_u', figsize=(10, 7))
plot_data_and_fit(sdf, 'Date', None, 'Cf. Odds', 'cf_odds_l', 'cf_odds_u', palette=[colorblind[2],colorblind[2]], ax=ax);

png

Last updated on 04/03/2021 13:33:20

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

babino2020masks-0.0.8.tar.gz (13.8 kB view details)

Uploaded Source

Built Distribution

babino2020masks-0.0.8-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file babino2020masks-0.0.8.tar.gz.

File metadata

  • Download URL: babino2020masks-0.0.8.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for babino2020masks-0.0.8.tar.gz
Algorithm Hash digest
SHA256 8d41b11425fd51985ec567106b8c2c33d295d1f5fce44e1c6fa7d4c32202dba7
MD5 299b9689273e2e92830262874385bdc7
BLAKE2b-256 3acfe93d25b0d90413e84d5002587ec4750a92225955432c949d4c80318e6d45

See more details on using hashes here.

File details

Details for the file babino2020masks-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: babino2020masks-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for babino2020masks-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 40ea536180e1d6e78f9c3598dd7fcc7090f80489d5ca6cac42220d33d945b5d2
MD5 436487f1990ace1862663a5e26b1060f
BLAKE2b-256 562cf13f4153fb32851b201274af4c70d7f8c78ee871724c67f37e6b2a796d5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page