Skip to main content

Structured matrices

Project description

Structured Matrices

CI Coverage Status Latest Docs Code style: black

Structured matrices

Requirements and Installation

See the instructions here. Then simply

pip install backends-matrix

Example

>>> import lab as B

>>> from matrix import Diagonal

>>> d = Diagonal(B.rand(2, 3))  # A batch of diagonal marices

>>> d
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.427 0.912 0.622]
       [0.777 0.048 0.808]]>

>>> 2 * d
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.854 1.824 1.243]
       [1.553 0.096 1.616]]>
  
>>> 2 * d + 1
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[0.854 1.824 1.243]
             [1.553 0.096 1.616]]>
 lr=<low-rank matrix: batch=(), shape=(3, 3), dtype=int64, rank=1
     left=[[1]
           [1]
           [1]]
     middle=<diagonal matrix: batch=(), shape=(1, 1), dtype=int64
             diag=[1]>>>

>>> B.inv(2 * d + 1)
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[ 1.171  0.548  0.804]
             [ 0.644 10.386  0.619]]>
 lr=<low-rank matrix: batch=(2,), shape=(3, 3), dtype=float64, rank=1
     left=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
           mat=[[[ 1.171]
                 [ 0.548]
                 [ 0.804]]

                [[ 0.644]
                 [10.386]
                 [ 0.619]]]>
     middle=<dense matrix: batch=(2,), shape=(1, 1), dtype=float64
             mat=[[[-0.284]]

                  [[-0.079]]]>
     right=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
            mat=[[[ 1.171]
                  [ 0.548]
                  [ 0.804]]

                 [[ 0.644]
                  [10.386]
                  [ 0.619]]]>>>

>>> B.inv(B.inv(2 * d + 1))
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[0.854 1.824 1.243]
             [1.553 0.096 1.616]]>
 lr=<low-rank matrix: batch=(2,), shape=(3, 3), dtype=float64, rank=1
     left=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
           mat=[[[1.]
                 [1.]
                 [1.]]

                [[1.]
                 [1.]
                 [1.]]]>
     middle=<dense matrix: batch=(2,), shape=(1, 1), dtype=float64
             mat=[[[1.]]

                  [[1.]]]>
     right=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
            mat=[[[1.]
                  [1.]
                  [1.]]

                 [[1.]
                  [1.]
                  [1.]]]>>>

>>> B.inv(B.inv(2 * d + 1)) - 1
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.854 1.824 1.243]
       [1.553 0.096 1.616]]>

Matrix Types

All matrix types are subclasses of AbstractMatrix.

The following base types are provided:

Zero
Dense
Diagonal
Constant
LowerTriangular
UpperTriangular

The following composite types are provided:

LowRank
Woodbury
Kronecker
TiledBlocks

Functions

The following functions are added to LAB. They can be accessed with B.<function> where import lab as B.

shape_broadcast(*elements)
shape_batch(a, *indices)
shape_batch_broadcast(*elements)
shape_matrix(a, *indices)
shape_matrix_broadcast(*elements)

broadcast_batch_to(a, *batch)

dense(a)
fill_diag(a, diag_len)
block(*rows)
block_diag(*blocks)

matmul_diag(a, b, tr_a=False, tr_b=False)

pd_inv(a)
schur(a)
pd_schur(a)
iqf(a, b, c)
iqf_diag(a, b, c)

ratio(a, c)
root(a)

sample(a, num=1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backends-matrix-1.3.0.tar.gz (56.6 kB view hashes)

Uploaded Source

Built Distribution

backends_matrix-1.3.0-py3-none-any.whl (98.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page