Skip to main content

Structured matrices

Project description

Structured Matrices

CI Coverage Status Latest Docs Code style: black

Structured matrices

Requirements and Installation

See the instructions here. Then simply

pip install backends-matrix

Example

>>> import lab as B

>>> from matrix import Diagonal

>>> d = Diagonal(B.ones(3))

>>> d
<diagonal matrix: shape=3x3, data type=float64,
 diag=[1. 1. 1.]>
  
>>> 2 * d
<diagonal matrix: shape=3x3, data type=float64
 diag=[2. 2. 2.]>

>>> 2 * d + 1
<Woodbury matrix: shape=3x3, dtype=int64
 diag=<diagonal matrix: shape=3x3, dtype=float64
       diag=[2. 2. 2.]>
 lr=<low-rank matrix: shape=3x3, dtype=int64, rank=1
     left=[[1]
           [1]
           [1]]
     middle=<diagonal matrix: shape=1x1, dtype=int64
             diag=[1]>>>
  
>>> B.inv(2 * d + 1)
<Woodbury matrix: shape=3x3, dtype=float64
 diag=<diagonal matrix: shape=3x3, dtype=float64
       diag=[0.5 0.5 0.5]>
 lr=<low-rank matrix: shape=3x3, dtype=float64, rank=1
     left=<dense matrix: shape=3x1, dtype=float64
           mat=[[0.5]
                [0.5]
                [0.5]]>
     middle=<dense matrix: shape=1x1, dtype=float64
             mat=[[-0.4]]>
     right=<dense matrix: shape=3x1, dtype=float64
            mat=[[0.5]
                 [0.5]
                 [0.5]]>>>

>>> B.inv(B.inv(2 * d + 1))
<Woodbury matrix: shape=3x3, dtype=float64
 diag=<diagonal matrix: shape=3x3, dtype=float64
       diag=[2. 2. 2.]>
 lr=<low-rank matrix: shape=3x3, dtype=float64, rank=1
     left=<dense matrix: shape=3x1, dtype=float64
           mat=[[1.]
                [1.]
                [1.]]>
     middle=<dense matrix: shape=1x1, dtype=float64
             mat=[[1.]]>
     right=<dense matrix: shape=3x1, dtype=float64
            mat=[[1.]
                 [1.]
                 [1.]]>>>

>>> B.inv(B.inv(2 * d + 1)) + 3
<Woodbury matrix: shape=3x3, dtype=float64
 diag=<diagonal matrix: shape=3x3, dtype=float64
       diag=[2. 2. 2.]>
 lr=<low-rank matrix: shape=3x3, dtype=float64, rank=1
     left=[[1.]
           [1.]
           [1.]]
     middle=[[4.]]
     right=[[1.]
            [1.]
            [1.]]>>

>>> B.kron(d, 2 * d)
<Kronecker product: shape=9x9, dtype=float64
 left=<diagonal matrix: shape=3x3, dtype=float64
       diag=[1. 1. 1.]>
 right=<diagonal matrix: shape=3x3, dtype=float64
        diag=[2. 2. 2.]>>

>>> B.inv(B.kron(d, 2 * d))
<Kronecker product: shape=9x9, dtype=float64
 left=<diagonal matrix: shape=3x3, dtype=float64
       diag=[1. 1. 1.]>
 right=<diagonal matrix: shape=3x3, dtype=float64
        diag=[0.5 0.5 0.5]>>

Matrix Types

All matrix types are subclasses of AbstractMatrix.

The following base types are provided:

Zero
Dense
Diagonal
Constant
LowerTriangular
UpperTriangular

The following composite types are provided:

LowRank
Woodbury
Kronecker

Functions

The following functions are added to LAB. They can be accessed with B.<function> where import lab as B.

dense(a)
fill_diag(a, diag_len)
block(*rows)

matmul_diag(a, b, tr_a=False, tr_b=False)

pd_inv(a)
schur(a)
pd_schur(a)
iqf(a, b, c)
iqf_diag(a, b, c)

ratio(a, c)
root(a)

sample(a, num=1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backends-matrix-1.0.0.tar.gz (36.3 kB view details)

Uploaded Source

File details

Details for the file backends-matrix-1.0.0.tar.gz.

File metadata

  • Download URL: backends-matrix-1.0.0.tar.gz
  • Upload date:
  • Size: 36.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.25.1 setuptools/51.1.2 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.10

File hashes

Hashes for backends-matrix-1.0.0.tar.gz
Algorithm Hash digest
SHA256 ef47d5bedd1030d1c552c0456a8cd69fbbb32d9c892ffe3c55fb1cc0ad161f8a
MD5 0beb87c1eb06de6e14e3904b15d7e2bd
BLAKE2b-256 19fc9bba90d756bee2196ed61b3de704835c025e86306629304f9bd46d868404

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page