Skip to main content

Structured matrices

Project description

Structured Matrices

CI Coverage Status Latest Docs Code style: black

Structured matrices

Requirements and Installation

See the instructions here. Then simply

pip install backends-matrix

Example

>>> import lab as B

>>> from matrix import Diagonal

>>> d = Diagonal(B.rand(2, 3))  # A batch of diagonal marices

>>> d
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.427 0.912 0.622]
       [0.777 0.048 0.808]]>

>>> 2 * d
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.854 1.824 1.243]
       [1.553 0.096 1.616]]>
  
>>> 2 * d + 1
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[0.854 1.824 1.243]
             [1.553 0.096 1.616]]>
 lr=<low-rank matrix: batch=(), shape=(3, 3), dtype=int64, rank=1
     left=[[1]
           [1]
           [1]]
     middle=<diagonal matrix: batch=(), shape=(1, 1), dtype=int64
             diag=[1]>>>

>>> B.inv(2 * d + 1)
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[ 1.171  0.548  0.804]
             [ 0.644 10.386  0.619]]>
 lr=<low-rank matrix: batch=(2,), shape=(3, 3), dtype=float64, rank=1
     left=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
           mat=[[[ 1.171]
                 [ 0.548]
                 [ 0.804]]

                [[ 0.644]
                 [10.386]
                 [ 0.619]]]>
     middle=<dense matrix: batch=(2,), shape=(1, 1), dtype=float64
             mat=[[[-0.284]]

                  [[-0.079]]]>
     right=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
            mat=[[[ 1.171]
                  [ 0.548]
                  [ 0.804]]

                 [[ 0.644]
                  [10.386]
                  [ 0.619]]]>>>

>>> B.inv(B.inv(2 * d + 1))
<Woodbury matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
       diag=[[0.854 1.824 1.243]
             [1.553 0.096 1.616]]>
 lr=<low-rank matrix: batch=(2,), shape=(3, 3), dtype=float64, rank=1
     left=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
           mat=[[[1.]
                 [1.]
                 [1.]]

                [[1.]
                 [1.]
                 [1.]]]>
     middle=<dense matrix: batch=(2,), shape=(1, 1), dtype=float64
             mat=[[[1.]]

                  [[1.]]]>
     right=<dense matrix: batch=(2,), shape=(3, 1), dtype=float64
            mat=[[[1.]
                  [1.]
                  [1.]]

                 [[1.]
                  [1.]
                  [1.]]]>>>

>>> B.inv(B.inv(2 * d + 1)) - 1
<diagonal matrix: batch=(2,), shape=(3, 3), dtype=float64
 diag=[[0.854 1.824 1.243]
       [1.553 0.096 1.616]]>

Matrix Types

All matrix types are subclasses of AbstractMatrix.

The following base types are provided:

Zero
Dense
Diagonal
Constant
LowerTriangular
UpperTriangular

The following composite types are provided:

LowRank
Woodbury
Kronecker
TiledBlocks

Functions

The following functions are added to LAB. They can be accessed with B.<function> where import lab as B.

shape_broadcast(*elements)
shape_batch(a, *indices)
shape_batch_broadcast(*elements)
shape_matrix(a, *indices)
shape_matrix_broadcast(*elements)

broadcast_batch_to(a, *batch)

dense(a)
fill_diag(a, diag_len)
block(*rows)
block_diag(*blocks)

matmul_diag(a, b, tr_a=False, tr_b=False)

pd_inv(a)
schur(a)
pd_schur(a)
iqf(a, b, c)
iqf_diag(a, b, c)

ratio(a, c)
root(a)

sample(a, num=1)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

backends-matrix-1.2.10.tar.gz (56.6 kB view details)

Uploaded Source

File details

Details for the file backends-matrix-1.2.10.tar.gz.

File metadata

  • Download URL: backends-matrix-1.2.10.tar.gz
  • Upload date:
  • Size: 56.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for backends-matrix-1.2.10.tar.gz
Algorithm Hash digest
SHA256 2e32282b63aa5c678636c12fa78acc769c4ec56fb4728c58391945be7e5e83e4
MD5 5fa5ff542f4bef6961f076c84da51e7c
BLAKE2b-256 07722eeae1dfb8fe29241a23b7ac19b6330e8f6b4745f63660415cb0ead3b53a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page