Skip to main content

A generic interface for linear algebra backends

Project description

LAB

Build Coverage Status Latest Docs

A generic interface for linear algebra backends: code it once, run it on any backend

Note: LAB requires Python 3.5+ and TensorFlow 2 if TensorFlow is used.

Installation

Before installing the package, please ensure that gcc and gfortran are available. On OS X, these are both installed with brew install gcc; users of Anaconda may want to instead consider conda install gcc. On Linux, gcc is most likely already available, and gfortran can be installed with apt-get install gfortran. Then simply

pip install backends

Basic Usage

The basic use case for the package is to write code that automatically determines the backend to use depending on the types of its arguments.

Example:

import lab as B
import lab.autograd    # Load the AutoGrad extension.
import lab.torch       # Load the PyTorch extension.
import lab.tensorflow  # Load the TensorFlow extension.


def objective(matrix):
    outer_product = B.matmul(matrix, matrix, tr_b=True)
    return B.mean(outer_product)

The AutoGrad, PyTorch, and TensorFlow extensions are not loaded automatically to not enforce a dependency on all three frameworks. An extension can alternatively be loaded via import lab.autograd as B.

Run it with NumPy and AutoGrad:

>>> import autograd.numpy as np

>>> objective(B.randn(np.float64, 2, 2))
0.15772589216756833

>>> grad(objective)(B.randn(np.float64, 2, 2))
array([[ 0.23519042, -1.06282928],
       [ 0.23519042, -1.06282928]])

Run it with TensorFlow:

>>> import tensorflow as tf

>>> objective(B.randn(tf.float64, 2, 2))
<tf.Tensor 'Mean:0' shape=() dtype=float64>

Run it with PyTorch:

>>> import torch

>>> objective(B.randn(torch.float64, 2, 2))
tensor(1.9557, dtype=torch.float64)

List of Types

This section lists all available types, which can be used to check types of objects or extend functions.

Example:

>>> import lab as B

>>> from plum import List, Tuple

>>> import numpy as np

>>> isinstance([1., np.array([1., 2.])], List(B.NPNumeric))
True

>>> isinstance([1., np.array([1., 2.])], List(B.TFNumeric))
False

>>> import tensorflow as tf

>>> import lab.tensorflow

>>> isinstance((tf.constant(1.), tf.ones(5)), Tuple(B.TFNumeric))
True

General

Int          # Integers
Float        # Floating-point numbers
Bool         # Booleans
Number       # Numbers
Numeric      # Numerical objects, including booleans
DType        # Data type
Framework    # Anything accepted by supported frameworks

NumPy

NPNumeric
NPDType
 
NP           # Anything NumPy

AutoGrad

AGNumeric
AGDType
 
AG           # Anything AutoGrad

TensorFlow

TFNumeric
TFDType
 
TF           # Anything TensorFlow

PyTorch

TorchNumeric
TorchDType
 
Torch        # Anything PyTorch

List of Methods

This section lists all available constants and methods.

  • Arguments must be given as arguments and keyword arguments must be given as keyword arguments. For example, sum(tensor, axis=1) is valid, but sum(tensor, 1) is not.

  • The names of arguments are indicative of their function:

    • a, b, and c indicate general tensors.
    • dtype indicates a data type. E.g, np.float32 or tf.float64; and rand(np.float32) creates a NumPy random number, whereas rand(tf.float64) creates a TensorFlow random number. Data types are always given as the first argument.
    • shape indicates a shape. The dimensions of a shape are always given as separate arguments to the function. E.g., reshape(tensor, 2, 2) is valid, but reshape(tensor, (2, 2)) is not.
    • axis indicates an axis over which the function may perform its action. An axis is always given as a keyword argument.
    • ref indicates a reference tensor from which properties, like its shape and data type, will be used. E.g., zeros(tensor) creates a tensor full of zeros of the same shape and data type as tensor.

See the documentation for more detailed descriptions of each function.

Special Variables

default_dtype  # Default data type.
epsilon        # Magnitude of diagonal to regularise matrices with.

Constants

nan
pi
log_2_pi

isnan(a)

Generic

zeros(dtype, *shape)
zeros(*shape)
zeros(ref)

ones(dtype, *shape)
ones(*shape)
ones(ref)

eye(dtype, *shape)
eye(*shape)
eye(ref)

linspace(dtype, a, b, num)
linspace(a, b, num)

range(dtype, start, stop, step)
range(dtype, stop)
range(dtype, start, stop)
range(start, stop, step)
range(start, stop)
range(stop)

cast(dtype, a)

identity(a)
abs(a)
sign(a)
sqrt(a)
exp(a)
log(a)
sin(a)
cos(a)
tan(a)
sigmoid(a)
softplus(a)
relu(a)

add(a, b)
subtract(a, b)
multiply(a, b)
divide(a, b)
power(a, b)
minimum(a, b)
maximum(a, b)
leaky_relu(a, alpha)

min(a, axis=None)
max(a, axis=None)
sum(a, axis=None)
mean(a, axis=None)
std(a, axis=None)
logsumexp(a, axis=None)

all(a, axis=None)
any(a, axis=None)

lt(a, b)
le(a, b)
gt(a, b)
ge(a, b)

bvn_cdf(a, b, c)

scan(f, xs, *init_state)

sort(a, axis=-1, descending=False)
argsort(a, axis=-1, descending=False)

to_numpy(a)

Linear Algebra

transpose(a, perm=None) (alias: t, T)
matmul(a, b, tr_a=False, tr_b=False) (alias: mm, dot)
trace(a, axis1=0, axis2=1)
kron(a, b)
svd(a, compute_uv=True)
solve(a, b)
inv(a)
det(a) 
logdet(a) 
cholesky(a) (alias: chol)

cholesky_solve(a, b)  (alias: cholsolve)
triangular_solve(a, b, lower_a=True) (alias: trisolve)
toeplitz_solve(a, b, c) (alias: toepsolve)
toeplitz_solve(a, c)

outer(a, b)
reg(a, diag=None, clip=True)

pw_dists2(a, b)
pw_dists2(a)
pw_dists(a, b)
pw_dists(a)

ew_dists2(a, b)
ew_dists2(a)
ew_dists(a, b)
ew_dists(a)

pw_sums2(a, b)
pw_sums2(a)
pw_sums(a, b)
pw_sums(a)

ew_sums2(a, b)
ew_sums2(a)
ew_sums(a, b)
ew_sums(a)

Random

set_random_seed(seed) 

rand(dtype, *shape)
rand(*shape)
rand(ref)

randn(dtype, *shape)
randn(*shape)
randn(ref)

choice(a, n)
choice(a)

Shaping

shape(a)
rank(a)
length(a) (alias: size)
isscalar(a)
expand_dims(a, axis=0)
squeeze(a)
uprank(a)

diag(a)
flatten(a)
vec_to_tril(a)
tril_to_vec(a)
stack(*elements, axis=0)
unstack(a, axis=0)
reshape(a, *shape)
concat(*elements, axis=0)
concat2d(*rows)
tile(a, *repeats)
take(a, indices, axis=0)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for backends, version 0.3.2
Filename, size File type Python version Upload date Hashes
Filename, size backends-0.3.2.tar.gz (46.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page