A generic interface for linear algebra backends
Project description
LAB
A generic interface for linear algebra backends: code it once, run it on any backend
- Requirements and Installation
- Basic Usage
- List of Types
- List of Methods
- Devices
- Lazy Shapes
- Random Numbers
- Control Flow Cache
Requirements and Installation
See the instructions here. Then simply
pip install backends
Basic Usage
The basic use case for the package is to write code that automatically determines the backend to use depending on the types of its arguments.
Example:
import lab as B
import lab.autograd # Load the AutoGrad extension.
import lab.torch # Load the PyTorch extension.
import lab.tensorflow # Load the TensorFlow extension.
import lab.jax # Load the JAX extension.
def objective(matrix):
outer_product = B.matmul(matrix, matrix, tr_b=True)
return B.mean(outer_product)
The AutoGrad, PyTorch, TensorFlow, and JAX extensions are not loaded automatically to
not enforce a dependency on all three frameworks.
An extension can alternatively be loaded via import lab.autograd as B
.
Run it with NumPy and AutoGrad:
>>> import autograd.numpy as np
>>> objective(B.randn(np.float64, 2, 2))
0.15772589216756833
>>> grad(objective)(B.randn(np.float64, 2, 2))
array([[ 0.23519042, -1.06282928],
[ 0.23519042, -1.06282928]])
Run it with TensorFlow:
>>> import tensorflow as tf
>>> objective(B.randn(tf.float64, 2, 2))
<tf.Tensor 'Mean:0' shape=() dtype=float64>
Run it with PyTorch:
>>> import torch
>>> objective(B.randn(torch.float64, 2, 2))
tensor(1.9557, dtype=torch.float64)
Run it with JAX:
>>> import jax
>>> import jax.numpy as jnp
>>> jax.jit(objective)(B.randn(jnp.float32, 2, 2))
DeviceArray(0.3109299, dtype=float32)
>>> jax.jit(jax.grad(objective))(B.randn(jnp.float32, 2, 2))
DeviceArray([[ 0.2525182, -1.26065 ],
[ 0.2525182, -1.26065 ]], dtype=float32)
List of Types
This section lists all available types, which can be used to check types of objects or extend functions.
Example:
>>> import lab as B
>>> from plum import List, Tuple
>>> import numpy as np
>>> isinstance([1., np.array([1., 2.])], List(B.NPNumeric))
True
>>> isinstance([1., np.array([1., 2.])], List(B.TFNumeric))
False
>>> import tensorflow as tf
>>> import lab.tensorflow
>>> isinstance((tf.constant(1.), tf.ones(5)), Tuple(B.TFNumeric))
True
General
Int # Integers
Float # Floating-point numbers
Complex # Complex numbers
Bool # Booleans
Number # Numbers
Numeric # Numerical objects, including booleans
DType # Data type
Framework # Anything accepted by supported frameworks
Device # Any device type
NumPy
NPNumeric
NPDType
NPRandomState
NP # Anything NumPy
AutoGrad
AGNumeric
AGDType
AGRandomState
AG # Anything AutoGrad
TensorFlow
TFNumeric
TFDType
TFRandomState
TFDevice
TF # Anything TensorFlow
PyTorch
TorchNumeric
TorchDType
TorchDevice
TorchRandomState
Torch # Anything PyTorch
JAX
JAXNumeric
JAXDType
JAXDevice
JAXRandomState
JAX # Anything JAX
List of Methods
This section lists all available constants and methods.
-
Arguments must be given as arguments and keyword arguments must be given as keyword arguments. For example,
sum(tensor, axis=1)
is valid, butsum(tensor, 1)
is not. -
The names of arguments are indicative of their function:
a
,b
, andc
indicate general tensors.dtype
indicates a data type. E.g,np.float32
ortf.float64
; andrand(np.float32)
creates a NumPy random number, whereasrand(tf.float64)
creates a TensorFlow random number. Data types are always given as the first argument.shape
indicates a shape. The dimensions of a shape are always given as separate arguments to the function. E.g.,reshape(tensor, 2, 2)
is valid, butreshape(tensor, (2, 2))
is not.axis
indicates an axis over which the function may perform its action. An axis is always given as a keyword argument.device
refers to a device on which a tensor can placed, which can either be a framework-specific type or a string, e.g."cpu"
.ref
indicates a reference tensor from which properties, like its shape and data type, will be used. E.g.,zeros(tensor)
creates a tensor full of zeros of the same shape and data type astensor
.
See the documentation for more detailed descriptions of each function.
Special Variables
default_dtype # Default data type.
epsilon # Magnitude of diagonal to regularise matrices with.
Constants
nan
pi
log_2_pi
Data Types
dtype(a)
dtype_float(dtype)
dtype_float(a)
dtype_int(dtype)
dtype_int(a)
promote_dtypes(*dtype)
issubdtype(dtype1, dtype2)
Generic
isabstract(a)
jit(f, **kw_args)
isnan(a)
real(a)
imag(a)
device(a)
on_device(device)
on_device(a)
set_global_device(device)
to_active_device(a)
zeros(dtype, *shape)
zeros(*shape)
zeros(ref)
ones(dtype, *shape)
ones(*shape)
ones(ref)
zero(dtype)
zero(*refs)
one(dtype)
one(*refs)
eye(dtype, *shape)
eye(*shape)
eye(ref)
linspace(dtype, a, b, num)
linspace(a, b, num)
range(dtype, start, stop, step)
range(dtype, stop)
range(dtype, start, stop)
range(start, stop, step)
range(start, stop)
range(stop)
cast(dtype, a)
identity(a)
round(a)
floor(a)
ceil(a)
negative(a)
abs(a)
sign(a)
sqrt(a)
exp(a)
log(a)
log1p(a)
sin(a)
arcsin(a)
cos(a)
arccos(a)
tan(a)
arctan(a)
tanh(a)
arctanh(a)
erf(a)
sigmoid(a)
softplus(a)
relu(a)
add(a, b)
subtract(a, b)
multiply(a, b)
divide(a, b)
power(a, b)
minimum(a, b)
maximum(a, b)
leaky_relu(a, alpha)
softmax(a, axis=None)
min(a, axis=None, squeeze=True)
max(a, axis=None, squeeze=True)
sum(a, axis=None, squeeze=True)
prod(a, axis=None, squeeze=True)
mean(a, axis=None, squeeze=True)
std(a, axis=None, squeeze=True)
logsumexp(a, axis=None, squeeze=True)
all(a, axis=None, squeeze=True)
any(a, axis=None, squeeze=True)
nansum(a, axis=None, squeeze=True)
nanprod(a, axis=None, squeeze=True)
nanmean(a, axis=None, squeeze=True)
nanstd(a, axis=None, squeeze=True)
argmin(a, axis=None)
argmax(a, axis=None)
lt(a, b)
le(a, b)
gt(a, b)
ge(a, b)
eq(a, b)
ne(a, b)
bvn_cdf(a, b, c)
cond(condition, f_true, f_false, xs**)
where(condition, a, b)
scan(f, xs, *init_state)
sort(a, axis=-1, descending=False)
argsort(a, axis=-1, descending=False)
quantile(a, q, axis=None)
to_numpy(a)
jit_to_numpy(a) # Caches results for `B.jit`.
Linear Algebra
transpose(a, perm=None) (alias: t, T)
matmul(a, b, tr_a=False, tr_b=False) (alias: mm, dot)
einsum(equation, *elements)
trace(a, axis1=0, axis2=1)
kron(a, b)
svd(a, compute_uv=True)
eig(a, compute_eigvecs=True)
solve(a, b)
inv(a)
pinv(a)
det(a)
logdet(a)
expm(a)
logm(a)
cholesky(a) (alias: chol)
cholesky_solve(a, b) (alias: cholsolve)
triangular_solve(a, b, lower_a=True) (alias: trisolve)
toeplitz_solve(a, b, c) (alias: toepsolve)
toeplitz_solve(a, c)
outer(a, b)
reg(a, diag=None, clip=True)
pw_dists2(a, b)
pw_dists2(a)
pw_dists(a, b)
pw_dists(a)
ew_dists2(a, b)
ew_dists2(a)
ew_dists(a, b)
ew_dists(a)
pw_sums2(a, b)
pw_sums2(a)
pw_sums(a, b)
pw_sums(a)
ew_sums2(a, b)
ew_sums2(a)
ew_sums(a, b)
ew_sums(a)
Random
set_random_seed(seed)
create_random_state(dtype, seed=0)
global_random_state(dtype)
global_random_state(a)
set_global_random_state(state)
rand(state, dtype, *shape)
rand(dtype, *shape)
rand(*shape)
rand(state, ref)
rand(ref)
randn(state, dtype, *shape)
randn(dtype, *shape)
randn(*shape)
randn(state, ref)
randn(ref)
choice(a, n)
choice(a)
randint(state, dtype, *shape, lower=0, upper)
randint(dtype, *shape, lower=0, upper)
randint(*shape, lower=0, upper)
randint(state, ref, lower=0, upper)
randint(ref, lower=0, upper)
randperm(state, dtype, n)
randperm(dtype, n)
randperm(n)
Shaping
shape(a, *dims)
rank(a)
length(a) (alias: size)
is_scalar(a)
expand_dims(a, axis=0, times=1)
squeeze(a, axis=None)
uprank(a, rank=2)
downrank(a, rank=2, preserve=False)
broadcast_to(a, *shape)
diag(a)
diag_extract(a)
diag_construct(a)
flatten(a)
vec_to_tril(a, offset=0)
tril_to_vec(a, offset=0)
stack(*elements, axis=0)
unstack(a, axis=0, squeeze=True)
reshape(a, *shape)
concat(*elements, axis=0)
concat2d(*rows)
tile(a, *repeats)
take(a, indices_or_mask, axis=0)
submatrix(a, indices_or_mask)
Devices
You can get the device of a tensor with B.device(a)
,
and you can execute a computation on a device by entering B.on_device(device)
as a context:
with B.on_device("gpu:0"):
a = B.randn(tf.float32, 2, 2)
b = B.randn(tf.float32, 2, 2)
c = a @ b
Within such a context, a tensor that is not on the active device can be moved to the
active device with B.to_active_device(a)
.
You can also globally set the active device with B.set_global_device("gpu:0")
.
Lazy Shapes
If a function is evaluated abstractly, then elements of the shape of a tensor, e.g.
B.shape(a)[0]
, may also be tensors, which can break dispatch.
By entering B.lazy_shapes()
, shapes and elements of shapes will be wrapped in a custom
type to fix this issue.
with B.lazy_shapes():
a = B.eye(2)
print(type(B.shape(a)))
# <class 'lab.shape.Shape'>
print(type(B.shape(a)[0]))
# <class 'lab.shape.Dimension'>
Random Numbers
If you call a random number generator without providing a random state, e.g.
B.randn(np.float32, 2)
, the global random state from the corresponding
backend is used.
For JAX, since there is no global random state, LAB provides a JAX global
random state accessible through B.jax_global_random_state
once lab.jax
is loaded.
If you do not want to use a global random state but rather explicitly maintain
one, you can create a random state with B.create_random_state
and then
pass this as the first argument to the random number generators.
The random number generators will then return a tuple containing the updated
random state and the random result.
# Create random state.
state = B.create_random_state(tf.float32, seed=0)
# Generate two random arrays.
state, x = B.randn(state, tf.float32, 2)
state, y = B.randn(state, tf.float32, 2)
Control Flow Cache
Coming soon!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.