model-based reinforcement learning toolbox
Project description
Baconian: Boosting model-based reinforcement learning
Baconian [beˈkonin] is a toolbox for model-based reinforcement learning with user-friendly experiment setting-up, logging and visualization modules developed by CAP. We aim to develop a flexible, re-usable and modularized framework that can allow the users to easily set-up their model-based RL experiments by reusing modules we provide.
Installation
You can easily install by (with python 3.5/3.6/3.7, Ubuntu 16.04/18.04):
# install tensorflow with/without GPU based on your machine
pip install tensorflow-gpu==1.15.2
# or
pip install tensorflow==1.15.2
pip install baconian
For more advance usage like using Mujoco environment, please refer to our documentation page.
Release news:
- 2020.04.29 v0.2.2 Fix some memory issues in SampleData module, and simplify some APIs.
- 2020.02.10 We are including external reward & terminal function of Gym/mujoco tasks with well-written documents.
- 2020.01.30 Update some dependent packages versions, and release some preliminary benchmark results with hyper-parameters.
For previous news, please go here
Documentation
We support python 3.5, 3.6, and 3.7 with Ubuntu 16.04 or 18.04. Documentation is available at http://baconian-public.readthedocs.io/
Algorithms Reference:
Model-based:
1. Dyna
Sutton, Richard S. "Dyna, an integrated architecture for learning, planning, and reacting." ACM Sigart Bulletin 2.4 (1991): 160-163.
2. LQR
Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012).
3. iLQR
Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012).
4. MPC
Garcia, Carlos E., David M. Prett, and Manfred Morari. "Model predictive control: theory and practice—a survey." Automatica 25.3 (1989): 335-348.
5. Model-ensemble
Kurutach, Thanard, et al. "Model-ensemble trust-region policy optimization." arXiv preprint arXiv:1802.10592 (2018).
Model-free
1. DQN
Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).
2. PPO
Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).
3. DDPG
Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).
Algorithms in Progress
1. Random Shooting
Rao, Anil V. "A survey of numerical methods for optimal control." Advances in the Astronautical Sciences 135.1 (2009): 497-528.
2. MB-MF
Nagabandi, Anusha, et al. "Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.
3. GPS
Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." The Journal of Machine Learning Research 17.1 (2016): 1334-1373.
Acknowledgement
Thanks to the following open-source projects:
- garage: https://github.com/rlworkgroup/garage
- rllab: https://github.com/rll/rllab
- baselines: https://github.com/openai/baselines
- gym: https://github.com/openai/gym
- trpo: https://github.com/pat-coady/trpo
Citing Baconian
If you find Baconian is useful for your research, please consider cite our demo paper here:
@article{
linsen2019baconian,
title={Baconian: A Unified Opensource Framework for Model-Based Reinforcement Learning},
author={Linsen, Dong and Guanyu, Gao and Yuanlong, Li and Yonggang, Wen},
journal={arXiv preprint arXiv:1904.10762},
year={2019}
}
Report an issue
If you find any bugs on issues, please open an issue or send an email to me (linsen001@e.ntu.edu.sg) with detailed information. I appreciate your help!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file baconian-0.2.6.tar.gz
.
File metadata
- Download URL: baconian-0.2.6.tar.gz
- Upload date:
- Size: 140.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0b39f2ee21f4a23cd5907d1e71e9c9af6291c4f659a55f4b0ebd79546514be4 |
|
MD5 | 0f90d783c58dfc82e3f3585de0b4ef0f |
|
BLAKE2b-256 | 82f7dd96bfdf2a403bdde5f246d356c4ba913b2b85eae201affa18eb029b59bd |
File details
Details for the file baconian-0.2.6-py3-none-any.whl
.
File metadata
- Download URL: baconian-0.2.6-py3-none-any.whl
- Upload date:
- Size: 578.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8839558daec21ed05e533a586e2486b8546a49e4fe5c38789a433cdd556623c |
|
MD5 | 9358c7bcd2ca7da24cd5eff12ef108d1 |
|
BLAKE2b-256 | 388bce5a268dbe530c2179dd6a08e9dc1767c8cb1abe52324627d9597ac5f796 |