Skip to main content

model-based reinforcement learning toolbox

Project description

Baconian: Boosting model-based reinforcement learning

Build Status Documentation Status GitHub issues Codacy Badge codecov GitHub commit activity GitHub

Baconian [beˈkonin] is a toolbox for model-based reinforcement learning with user-friendly experiment setting-up, logging and visualization modules developed by CAP. We aim to develop a flexible, re-usable and modularized framework that can allow the users to easily set-up their model-based RL experiments by reusing modules we provide.

Installation

You can easily install by (with python 3.5/3.6/3.7, Ubuntu 16.04/18.04):

# install tensorflow with/without GPU based on your machine
pip install tensorflow-gpu==1.15.2
# or
pip install tensorflow==1.15.2 

pip install baconian

For more advance usage like using Mujoco environment, please refer to our documentation page.

Release news:

  • 2020.04.29 v0.2.2 Fix some memory issues in SampleData module, and simplify some APIs.
  • 2020.02.10 We are including external reward & terminal function of Gym/mujoco tasks with well-written documents.
  • 2020.01.30 Update some dependent packages versions, and release some preliminary benchmark results with hyper-parameters.

For previous news, please go here

Documentation

We support python 3.5, 3.6, and 3.7 with Ubuntu 16.04 or 18.04. Documentation is available at http://baconian-public.readthedocs.io/

Algorithms Reference:

Model-based:

1. Dyna

Sutton, Richard S. "Dyna, an integrated architecture for learning, planning, and reacting." ACM Sigart Bulletin 2.4 (1991): 160-163.

2. LQR

Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012).

3. iLQR

Abbeel, P. "Optimal Control for Linear Dynamical Systems and Quadratic Cost (‘LQR’)." (2012).

4. MPC

Garcia, Carlos E., David M. Prett, and Manfred Morari. "Model predictive control: theory and practice—a survey." Automatica 25.3 (1989): 335-348.

5. Model-ensemble

Kurutach, Thanard, et al. "Model-ensemble trust-region policy optimization." arXiv preprint arXiv:1802.10592 (2018).

Model-free

1. DQN

Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning." arXiv preprint arXiv:1312.5602 (2013).

2. PPO

Schulman, John, et al. "Proximal policy optimization algorithms." arXiv preprint arXiv:1707.06347 (2017).

3. DDPG

Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

Algorithms in Progress

1. Random Shooting

Rao, Anil V. "A survey of numerical methods for optimal control." Advances in the Astronautical Sciences 135.1 (2009): 497-528.

2. MB-MF

Nagabandi, Anusha, et al. "Neural network dynamics for model-based deep reinforcement learning with model-free fine-tuning." 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

3. GPS

Levine, Sergey, et al. "End-to-end training of deep visuomotor policies." The Journal of Machine Learning Research 17.1 (2016): 1334-1373.

Acknowledgement

Thanks to the following open-source projects:

Citing Baconian

If you find Baconian is useful for your research, please consider cite our demo paper here:

@article{
linsen2019baconian, 
title={Baconian: A Unified Opensource Framework for Model-Based Reinforcement Learning}, 
author={Linsen, Dong and Guanyu, Gao and Yuanlong, Li and Yonggang, Wen}, 
journal={arXiv preprint arXiv:1904.10762},
year={2019} 
}

Report an issue

If you find any bugs on issues, please open an issue or send an email to me (linsen001@e.ntu.edu.sg) with detailed information. I appreciate your help!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baconian-0.2.6.tar.gz (140.3 kB view details)

Uploaded Source

Built Distribution

baconian-0.2.6-py3-none-any.whl (578.3 kB view details)

Uploaded Python 3

File details

Details for the file baconian-0.2.6.tar.gz.

File metadata

  • Download URL: baconian-0.2.6.tar.gz
  • Upload date:
  • Size: 140.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for baconian-0.2.6.tar.gz
Algorithm Hash digest
SHA256 a0b39f2ee21f4a23cd5907d1e71e9c9af6291c4f659a55f4b0ebd79546514be4
MD5 0f90d783c58dfc82e3f3585de0b4ef0f
BLAKE2b-256 82f7dd96bfdf2a403bdde5f246d356c4ba913b2b85eae201affa18eb029b59bd

See more details on using hashes here.

File details

Details for the file baconian-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: baconian-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 578.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for baconian-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 c8839558daec21ed05e533a586e2486b8546a49e4fe5c38789a433cdd556623c
MD5 9358c7bcd2ca7da24cd5eff12ef108d1
BLAKE2b-256 388bce5a268dbe530c2179dd6a08e9dc1767c8cb1abe52324627d9597ac5f796

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page