Skip to main content

Badger Batcher contains useful utilities for batching a sequence on records

Project description

Badger Batcher

https://img.shields.io/pypi/v/badger_batcher.svg https://travis-ci.com/tkasu/badger_batcher.svg?branch=master Documentation Status

Badger Batcher contains useful utilities for batching a sequence on records

Installation

$ pip install badger_batcher

Features

Import Batcher:

>>> from badger_batcher import Batcher

Split records based max limit for batch len:

>>> records = [f"record: {rec}" for rec in range(5)]
>>> batcher = Batcher(records, max_batch_size=2)
>>> batcher.batches()
[['record: 0', 'record: 1'], ['record: 2', 'record: 3'], ['record: 4']]

Split records with max limit for batch len and max limit for record size:

>>> records = [b"aaaa", b"bb", b"ccccc", b"d"]
>>> batcher = Batcher(
... records,
... max_batch_size=2,
... max_record_size=4,
... size_calc_fn=len,
... when_record_size_exceeded="skip",
... )
>>> batcher.batches()
[[b'aaaa', b'bb'], [b'd']]

Split records with max batch len and size:

>>> records = [b"a", b"a", b"a", b"b", b"ccc", b"toolargeforbatch", b"dd", b"e"]
>>> batcher = Batcher(
... records,
... max_batch_len=3,
... max_batch_size=5,
... size_calc_fn=len,
... when_record_size_exceeded="skip",
... )
>>> batcher.batches()
[[b'a', b'a', b'a'], [b'b', b'ccc'], [b'dd', b'e']]

When processing big chunks of data, consider iterating instead:

>>> import sys

>>> records = (f"record: {rec}" for rec in range(sys.maxsize))
>>> batcher = Batcher(records, max_batch_size=2)
>>> for batch in batcher:
...       # do something for each batch
...       some_fancy_fn(batch)

If you need to encode records before applying the batcher, just encode it before applying. Batcher will not eagerly realize the whole iterable, so use a generator for bigger iterables.

>>> records = ["a", "a", "a", "b", "ccc", "bbbb", "dd", "e"]
>>> encoded_records_gen = (record.encode("utf-16-le") for record in records)

>>> batcher = Batcher(
... encoded_records_gen,
... max_batch_len=3,
... max_record_size=6,
... max_batch_size=10,
... size_calc_fn=len,
... when_record_size_exceeded="skip",
... )

>>> batched_records = batcher.batches()
[
    [b"a\x00", b"a\x00", b"a\x00"],
    [b"b\x00", b"c\x00c\x00c\x00"],
    [b"d\x00d\x00", b"e\x00"],
]

Full example for e.g. Kinesis Streams like processing

import random
from badger_batcher import Batcher


def get_records():
    records = (
        f"""{{'id': '{i}', 'body': {('x' * random.randint(100_000, 7_000_000))}}}"""
        for i in range(10_000)
    )
    return records


records = get_records()
encoded_records = (record.encode("utf-8") for record in records)

batcher = Batcher(
    encoded_records,
    max_batch_len=500,
    max_record_size=1000 * 1000,
    max_batch_size=5 * 1000 * 1000,
    size_calc_fn=len,
    when_record_size_exceeded="skip",
)

for i, batch in enumerate(batcher):
    # do something

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

History

0.1.0 (2021-04-09)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

badger_batcher-0.4.0.tar.gz (19.6 kB view details)

Uploaded Source

File details

Details for the file badger_batcher-0.4.0.tar.gz.

File metadata

  • Download URL: badger_batcher-0.4.0.tar.gz
  • Upload date:
  • Size: 19.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for badger_batcher-0.4.0.tar.gz
Algorithm Hash digest
SHA256 1eb537d0c12fd990de19341739e52c51fb15d8a1afc3ad4e6ca4b2f4a3d89bc6
MD5 7aebc72f878d7f0f647212209c185931
BLAKE2b-256 d8ad46929eb77d305862e633a68f2bd711fd763010459dd1243594540403dd47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page