Skip to main content

Utility functions to be used in Python

Project description

bae0n_utils

Collection of utility functions to be used in Python.

ColoredText(r, g, b, text)

ex: print(ColoredText(255, 0, 0, 'Hello World'))

Displays colored text in the console.

params:

  • r - Value from 0-255 for Red
  • g - Value from 0-255 for Green
  • b - Value from 0-255 for Blue
  • text - Text to display with color

Returns: Modified text string, now with the given color.

FitCellsToWindow

ex: FitCellsToWindow()

Fits Jupyter cells to window size.

ActivateCellDoneSound

ex: ActivateCellDoneSound(url='https://bigsoundbank.com/UPLOAD/mp3/0116.mp3')

Plays a sound effect when a cell is complete. Currently kind of buggy with a failed cell.

params:

  • url (optional) - url of the sound you want to play. Accepts .wav and .mp3

ActivateCellFailSound

ex: ActivateCellFailSound()

Plays a sound effect if the cell execution fails.

ClearDir

ex: ClearDir('./images')

Removes all files from a directory.

params:

  • path - The source directory of the images to turn into a gif. Must include preceding ./, should not include ending /
  • safe_del - Prompts user input for confirmation if set to True. Default Value: True

MakeGif

ex: MakeGif('./data', './', 'test', 100, 'jpg')

Turns a directory of images into a gif.

params:

  • source_dir - The source directory of the images to turn into a gif. Must include preceding ./
  • out_dir - The directory to save the gif to. Must include preceding ./
  • gif_name - The name of the gif. Do not include filetype.
  • duration - Number of frames in the gif...I think.
  • file_type - File extension for the images. Do not include preceding .

CorrMatrixAnalysis

Displays in depth analysis of the correlation between features. Currently only addresses correlation of dependent feature to independent features, but will be updated soon.

params:

  • df - The dataframe to analyze.
  • dep_feature - The dependent feature.

example call:

df = pd.read_csv('Iris.csv')

CorrMatrixAnalysis(df, 'species')

Example output:

Features With High Correlation to diagnosis:
  -0.79  - concave points_worst
  -0.78  - perimeter_worst
  -0.78  - concave points_mean
  -0.78  - radius_worst
  -0.74  - perimeter_mean
  -0.73  - area_worst
  -0.73  - radius_mean
  -0.71  - area_mean

  Features With Moderate Correlation to diagnosis:
  -0.70  - concavity_mean
  -0.66  - concavity_worst
  -0.60  - compactness_mean
  -0.59  - compactness_worst
  -0.57  - radius_se
  -0.56  - perimeter_se
  -0.55  - area_se

  Features With No Correlation to diagnosis:
  -0.29  - compactness_se
  -0.25  - concavity_se
  -0.08  - fractal_dimension_se
    0.07  - smoothness_se
  -0.04  - id
    0.01  - fractal_dimension_mean
    0.01  - texture_se
    0.01  - symmetry_se

Many thanks to my muse for the constant inspiration, great ideas, and support <3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bae0n-utils-0.1.2.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

bae0n_utils-0.1.2-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file bae0n-utils-0.1.2.tar.gz.

File metadata

  • Download URL: bae0n-utils-0.1.2.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for bae0n-utils-0.1.2.tar.gz
Algorithm Hash digest
SHA256 8f25b2d963884c43b922eac11afa693d9f2d2a036be1d1819493b4ccb9e9b5c9
MD5 46cbbf76bb0595ae4c58afe4b4c0ff68
BLAKE2b-256 84f60af452486b48a21b3e8bd876561f7dfd919ef9bb3dc7abf44f4b08bfb4ef

See more details on using hashes here.

File details

Details for the file bae0n_utils-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: bae0n_utils-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for bae0n_utils-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9a90695826efe32db5267884b35a6c8e201623be01b3719f4e7bcd8df93406c7
MD5 8b0c752afe058eb0f8c42758d9269f23
BLAKE2b-256 871b0b194f611d06f18f08738dcd4d4e61969142ea9262ac57696ea5eff9d642

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page