BagelML is a library for Bagel's finetuning API.
Project description
Bagel Python Client 🥯
Welcome to the Bagel Python Client! Bagel is your platform for peer-to-peer machine learning, fine-tuning open-source models like Llama or Mistral, and using retrieval augmented generation (RAG).
One of the perks? No need to manage complex embeddings or model integrations yourself! The Bagel client handles these processes, saving you time and money. 🥯
Table of Contents
- Prerequisites
- Installation
- Import the necessary modules
- Define the Bagel server settings
- Create the Bagel client
- Ping the Bagel server
- Get the Bagel server version
- Create an Asset
- Delete an Asset
- Download Model Files
- Query Asset
- Update Asset
- Download file
- File Upload
- Fine-tune
- Get all assets
- Get all assets by Id
- Get finetuned model
- Get job by job id
- Get job
- List Job
- Add data to asset
Prerequisites
- Python 3.6+
- pip package manager
- Asset size limit 500MB (*Create a new issue if you want to increase the limit)
Installation
To install the Bagel Python client, run the following command in your terminal:
pip install bagelML
Import the necessary modules
import uuid
import os
import bagel
from dotenv import load_dotenv
This snippet imports the required modules for using Bagel.
Create the Bagel client
client = bagel.Client()
Create an instance of the Bagel client using the previously defined server settings.
Ping the Bagel server
print(client.ping())
This checks the connectivity to the Bagel server.
Get the Bagel server version
print(client.get_version())
Retrieves and prints the version of the Bagel server.
Create an Asset
Assets in Bagel serve as powerful containers for large datasets, encapsulating embeddings — high-dimensional vectors that represent various data forms, such as text, images, or audio. These Assets enable efficient similarity searches, which are fundamental to a wide range of applications, from recommendation systems and search engines to data analytics tools.
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
payload = {
"dataset_type": "RAW",
"title": "",
"category": "",
"details": "Testing",
"tags": ["AI", "DEMO", "TEST"],
"user_id": 'insert user id'
}
response = client.create_asset(payload, api_key)
print(response)
Note
: This code prompts the user to enter their API key securely (without displaying it on the screen) and then sets it as an environment variable named BAGEL_API_KEY
Delete an Asset
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
dataset_id = 'insert dataset/asset id'
response = client.delete_asset(dataset_id, api_key)
print(response)
This method deletes a specific Asset.
Query Asset
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = ""
payload = {
"where": {
# "category": "Cat2",
},
"where_document": {
# "is_published": True,
},
# "query_embeddings": [em],
"n_results": 1,
"include": ["metadatas", "documents", "distances"],
"query_texts": ["insert query text"],
"padding": False,
}
response = client.query_asset(asset_id, payload, api_key)
print(response)
Queries a specific Asset with detailed parameters.
Update Asset
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = ""
payload = {
"title": "Updated dataset title",
"category": "Updated category",
"details": "Updated dataset description.",
"tags": ["Updated", "Tags"]
}
response = client.update_asset(asset_id, payload, api_key)
print(response)
Updates the details of an existing Asset.
Download file
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = ""
file_name = ""
response = client.download_file(asset_id, file_name, api_key)
print(response)
Downloads a specific file from an Asset.
File Upload
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
dataset_id = ""
file_path = ""
response = client.file_upload(file_path, dataset_id, api_key)
print(response)
Uploads a file to a specific Asset.
Fine-tune
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
user_id = "" #insert user id
asset_id = "" #insert RAW asset id containing dataset
base_model = "" # model id of purchased base model from marketplace
file_name = "" # name of file in raw asset
title = "" # choose a title
response = client.fine_tune(title=title,
user_id=user_id,
asset_id = asset_id,
file_name = file_name,
base_model = base_model,
epochs = 3,
learning_rate = 0.01
)
print(response)
Fine-tunes a model using a specific Asset and provided parameters.
Note
: Epochs & learning rate are optional. By default, epochs = 3 & learning rate = 0.001. Users can change it according to their requirements.
Get all assets
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
user_Id = ""
response = client.get_all_asset(user_Id, api_key)
print(response)
Retrieves all assets for a specific user.
Get assets by Id
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = ""
response = client.get_asset_by_id(asset_id, api_key)
print(response)
Retrieves a specific asset by its ID.
Get finetuned model
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = ""
file_name = "train.txt"
# Call the function
response = client.download_file_by_asset_and_name(asset_id, file_name)
print(response)
Downloads a fine-tuned model by asset ID and file name.
Get job by asset id
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = "" # Replace with asset ID of fine-tuned model. e.g "eR57yd73b-7gt4-4a71-b0fd-afKJUIY6578Ge"
# Function to get job by asset
# Call the function
response = client.get_job_by_asset_id(asset_id, api_key)
print(response)
Retrieves the status of a specific job by asset ID.
Get job
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
job_id = "" # Replace with the actual job ID
response = client.get_job(job_id, api_key)
print(response)
Retrieves details of a job.
List Job
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
user_id = ""
# Call the function
response = client.list_jobs(user_id, api_key)
print(response)
Lists all jobs for a specific user.
Add data to asset
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
payload = {
"metadatas": [{ "source": "testing" }],
"documents": ["Hi man"],
"ids": ["xxxx-xxxx-xxxx-xxxx--xxxxx"], #manually generated by you
}
response = client.add_data_to_asset(asset_id, payload, api_key)
print(response)
Adds data to an existing asset.
Download Finetuned Model
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = "insert asset id"
response = client.download_model(asset_id, api_key)
print(response)
Buy Asset
import os
import bagel
from getpass import getpass
# Create the asset using the API key from environment variables
client = bagel.Client()
# Copy & Paste the API Key from https://bakery.bagel.net/api-key
DEMO_KEY_IN_USE = getpass("Enter your API key: ")
# Set environment variable
api_key = os.environ['BAGEL_API_KEY'] = DEMO_KEY_IN_USE
asset_id = "insert asset id"
user_id = "insert userid"
response = client.buy_asset(asset_id, user_id, api_key)
print(response)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bagelML-0.0.23.tar.gz
.
File metadata
- Download URL: bagelML-0.0.23.tar.gz
- Upload date:
- Size: 25.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3afcaa515546f999869031e49830f722a240b5241fcd2d315cd59fcc60373566 |
|
MD5 | 043ba9559183cad0732f91e51808d5a4 |
|
BLAKE2b-256 | 08fe96e57d8daf5d7f4b7521382ed56979ba6ab8d410401723556709ea58e103 |
File details
Details for the file bagelML-0.0.23-py3-none-any.whl
.
File metadata
- Download URL: bagelML-0.0.23-py3-none-any.whl
- Upload date:
- Size: 25.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 105a56e56ae0f1e3011e870759e767b7f00230fd75dc6ae1ead0482b5a23bfd6 |
|
MD5 | 3ec2581491f88b1fd6b97f4bd31d16f3 |
|
BLAKE2b-256 | 2d3097bdfa7cbb712a8bd6209e2baee686a7e5b7598fd7a362eeed776046c4e0 |