Bootstrap Average Hierarchical Clustering for filtering covariance matrices
Project description
BAHC
BAHC (Bootstrap Aggregated Hierarchical Clustering) is a Python package for filtering covariance matrices using hierarchical clustering and bootstrap aggregation.
Installation
To install the package, you can use pip:
pip install bahc
Alternatively, you can clone the repository and install the dependencies manually:
git clone https://github.com/yourusername/bahc.git
cd bahc
pip install -r requirements.txt
Usage
Here is an example of how to use the BAHC class:
import numpy as np
from bahc import BAHC
# Generate random data
data = np.random.normal(0, 1, size=(10, 100))
# Create an instance of BAHC and filter the data
bahc_instance = BAHC(data, K=[1, 2, 3], Nboot=100, method='near', filter_type='correlation')
# Print the filtered matrix
print(bahc_instance.filtered_matrix)
Methods
BAHC.__init__(self, data, K=1, Nboot=100, method='near', filter_type='covariance')
Initializes the BAHC class and performs the filtering.
data
(ndarray): Data matrix (N x T).K
(int or list): Recursion order.Nboot
(int): Number of bootstraps.method
(str): Regularization method ('no-neg' or 'near').filter_type
(str): Type of filtering ('correlation' or 'covariance').
BAHC.filter_matrix(self)
Filters the matrix using k-BAHC.
- Returns: Filtered matrix (N x N). If K is a list, returns a list of matrices.
BAHC.nearest_positive_semidefinite(self, matrix, n_iter=100, eig_tol=1e-6, conv_tol=1e-8)
Finds the nearest positive semidefinite matrix.
matrix
(ndarray): Input matrix.n_iter
(int): Maximum number of iterations.eig_tol
(float): Eigenvalue tolerance.conv_tol
(float): Convergence tolerance.- Returns: Nearest positive semidefinite matrix.
BAHC.higher_order_covariance(self, C, K)
Computes higher order covariance matrices.
C
(ndarray): Input covariance matrix.K
(list): List of recursion orders.- Yields: Higher order covariance matrices.
BAHC.generate_noise(self, N, T, epsilon=1e-10)
Generates noise for the given dimensions.
N
(int): Number of rows.T
(int): Number of columns.epsilon
(float): Standard deviation of the noise.- Returns: Generated noise matrix.
BAHC.remove_negative_eigenvalues(self, matrix)
Removes negative eigenvalues from the matrix.
matrix
(ndarray): Input matrix.- Returns: Matrix with non-negative eigenvalues.
References
- Bongiorno, C., & Challet, D. (2021). Covariance matrix filtering with bootstrapped hierarchies. PLoS ONE, 16(1), e0245092.
- Bongiorno, C., & Challet, D. (2022). Reactive global minimum variance portfolios with k-BAHC covariance cleaning. The European Journal of Finance, 28(13-15), 1344-1360.
Please cite the above papers if you use this code.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bahc-2.0.1.tar.gz
.
File metadata
- Download URL: bahc-2.0.1.tar.gz
- Upload date:
- Size: 4.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | be24de3cc579fc19872c362d2fdab3b6b172ca54801604d26223ad51d2b2e90a |
|
MD5 | 8cd857d0e7deaff4a171b008182f6d83 |
|
BLAKE2b-256 | fe4c26128e95457de6b386d57a0f7e84821bf4e30bd8b4231d57573f780c7938 |
File details
Details for the file bahc-2.0.1-py3-none-any.whl
.
File metadata
- Download URL: bahc-2.0.1-py3-none-any.whl
- Upload date:
- Size: 4.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd8f03eebd731d2a2ee6a88865dc3c73dc3834c9ac9ac3a9f529c4c544b2e685 |
|
MD5 | f542f52165301c52a1ad5dc249235326 |
|
BLAKE2b-256 | aca3a5f2673fbb95bac8153ec456d045a697e7e8b9e0b6c77aea2e27eb2c9e1e |