Skip to main content

Python的百度智能云api调用

Project description

百度智能云 API调用PythonSDK

这是一个用于百度云部分开放AI功能的Python库。主要为ORC功能,可以对各种图像文件进行文字识别,包括车牌、手写文字、通用文字、人脸发现、人脸比对和人流量统计等。

更多的功能大家可以提出,后续会慢慢开发这个库。

使用这个库,你可以很方便地调用百度云OCR API,并将识别结果以json的形式返回。你可以根据自己的需要来使用不同的API,以获得更精确或更快速的识别结果。

此外,这个库还提供了URL版本的文字识别功能,可以直接对网络图片进行识别。

使用方法

1.安装库

使用pip安装:

pip install baiducloud
  1. 准备API Key和Secret Key

2.准备API Key和Secret Key

在使用百度云OCR API之前,你需要去百度云控制台申请API Key和Secret Key。

3.初始化baiducloud类

在你的代码中导入baiducloud类,并使用API Key和Secret Key初始化它:

from baiducloud import baiducloud

api_key = "your_api_key"
secret_key = "your_secret_key"

bc = baiducloud(api_key, secret_key)

4.使用Python开发你的程序

例子1.车牌识别

result = bc.orc_license_plate("image.jpg")
print(result)

返回结果是一个json

例子2.使用URL版本的文字识别

result = bc.orc_license_plate_url("https://example.com/image.jpg")
print(result)

注意:使用URL版本的文字识别方法时,你需要确保图片URL是可以公开访问的。

例子3.使用人脸比对

result = bc.face_compare("https://example.com/image.jpg""https://example.com/image1.jpg")
print(result)

当然,还有更多的使用方法,具体可以参考baiducloud > main.py,使用方法大同小异,文档就后续再更新。

生成环境

下面是我的机器人的真实使用环境,大家可以进行一个参考:

#百度云 车牌识别
def baiduyun_orc_traffic_plate(img_path):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.orc_license_plate(img_path)
    number = response_data['words_result']['number']
    color = response_data['words_result']['color']
    return "车牌号:"+number+"\n颜色:"+color

#百度云 车牌识别——URL版
def baiduyun_orc_traffic_plate_url(img_url):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.orc_license_plate_url(img_url)
    number = response_data['words_result']['number']
    color = response_data['words_result']['color']
    return "车牌号:"+number+"\n颜色:"+color

#百度云 手写文字识别
def baiduyun_orc_handwriting(img_url):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.orc_handwriting_url(img_url)
    words_result = response_data['words_result']
    words = ""
    for i in words_result:
        words += i['words']+"\n"
    return words[:-1]

#百度云 通用文字识别 高精度
def baiduyun_orc_accurate_basic(img_url):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.orc_accurate_basic_url(img_url)
    words_result = response_data['words_result']
    words = ""
    for i in words_result:
        words += i['words']+"\n"
    return words[:-1]

#百度云 通用文字识别
def baiduyun_orc_general_basic(img_url):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.orc_general_basic_url()
    words_result = response_data['words_result']
    words = ""
    for i in words_result:
        words += i['words'] + "\n"
    return words[:-1]
#百度云 人脸检测
def baiduyun_face_check(img_path):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.face_detect(img_path)
    if response_data['error_code'] != 0:
        return response_data['error_msg']
    else:
        return "检测到"+str(response_data['result']['face_num'])+"张人脸"
#百度云 人脸对比
def baiduyun_face_contrast(img_path,img_path1):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.face_compare(img_path,img_path1)
    if response_data['error_code'] != 0:
        return response_data['error_msg']
    else:
        return "两张人脸相似度为:"+str(response_data['result']['score'])+"%"

#百度云 人流量
def baiduyun_person_num(img_path):
    bc = baiducloud.baiducloud(sqlite.search_API("百度云应用API_Key"), sqlite.search_API("百度云应用Secret_Key"))
    response_data = bc.person_num(img_path)
    return "图片中人流量为:"+str(response_data['person_num'])

当然,写的有些乱,但是应该可以看懂。

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baiducloud-1.0.8.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

baiducloud-1.0.8-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file baiducloud-1.0.8.tar.gz.

File metadata

  • Download URL: baiducloud-1.0.8.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for baiducloud-1.0.8.tar.gz
Algorithm Hash digest
SHA256 4c4c6f52b8ea595936102e0deb2a56b5172bc33271cc28a00f14c83f61bd952d
MD5 e0fd0e93e90b76a94536792428783fac
BLAKE2b-256 2353cd9836a6d2b2e2a7f3bf725b65a40a7fd75b97e27ec9f369466735a40b0e

See more details on using hashes here.

File details

Details for the file baiducloud-1.0.8-py3-none-any.whl.

File metadata

  • Download URL: baiducloud-1.0.8-py3-none-any.whl
  • Upload date:
  • Size: 6.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for baiducloud-1.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 b92be6fff55ba111f2af39b7ba0b401afcbce22209a811cd7383ebf492d5278c
MD5 ee98d0ebb99d03b3dac67e184df529c9
BLAKE2b-256 dd7e3bd40d3ec296b4c90cf16f00c7dae547e6fa0beb10a69b861fc1bc93597b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page