Skip to main content

No project description provided

Project description

Balloon Learning Environment

Docs



The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark environment for deep reinforcement learning algorithms, and is a followup to the Nature paper "Autonomous navigation of stratospheric balloons using reinforcement learning".

Getting Started

Note: The BLE requires python >= 3.7

The BLE can easily be installed with pip:

$ pip install --upgrade pip
$ pip install balloon_learning_environment

To install with the acme package:

$ pip install --upgrade pip
$ pip install balloon_learning_environment[acme]

Once the package has been installed, you can test it runs correctly by evaluating one of the benchmark agents:

python -m balloon_learning_environment.eval.eval \
  --agent=station_seeker \
  --renderer=matplotlib \
  --suite=micro_eval \
  --output_dir=/tmp/ble/eval

To install from GitHub directly, run the following commands from the root directory where you cloned the repository:

$ pip install --upgrade pip
$ pip install .[acme]

Ensure the BLE is Using Your GPU/TPU

The BLE contains a VAE for generating winds, which you will probably want to run on your accelerator. See the jax documentation for installing with GPU or TPU.

As a sanity check, you can open interactive python and run:

from balloon_learning_environment.env import balloon_env
env = balloon_env.BalloonEnv()

If you are not running with GPU/TPU, you should see a log like:

WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)

If you don't see this log, you should be good to go!

Next Steps

For more information, see the docs.

Giving credit

If you use the Balloon Learning Environment in your work, we ask that you use the following BibTeX entry:

@software{Greaves_Balloon_Learning_Environment_2021,
  author = {Greaves, Joshua and Candido, Salvatore and Dumoulin, Vincent and Goroshin, Ross and Ponda, Sameera S. and Bellemare, Marc G. and Castro, Pablo Samuel},
  month = {12},
  title = {{Balloon Learning Environment}},
  url = {https://github.com/google/balloon-learning-environment},
  version = {1.0.0},
  year = {2021}
}

If you use the ble_wind_field dataset, you should also cite

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A.,
Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G.,
Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M.,
Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P.,
Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F.,
Villaume, S., Thépaut, J-N. (2017): Complete ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate. Copernicus Climate Change Service
(C3S) Data Store (CDS). (Accessed on 01-04-2021)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

balloon_learning_environment-1.0.1.tar.gz (35.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file balloon_learning_environment-1.0.1.tar.gz.

File metadata

  • Download URL: balloon_learning_environment-1.0.1.tar.gz
  • Upload date:
  • Size: 35.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for balloon_learning_environment-1.0.1.tar.gz
Algorithm Hash digest
SHA256 f2463063511ae0024753c7bfc7832bd865d9d68b47953ad1dd2bf921b12b0a86
MD5 9335f48d34fee54d0a10391f1e213560
BLAKE2b-256 feadd5b78aa1d64ed9b679d0ea60fdf52104606b7dbf71b3fb84576c38ecbc97

See more details on using hashes here.

File details

Details for the file balloon_learning_environment-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: balloon_learning_environment-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 35.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for balloon_learning_environment-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0a6c8f7fbb7d2744e02ebb3a769c308f016f69cac327dc1862236d099fcb27d2
MD5 86909b24643f556e131416260bc98592
BLAKE2b-256 3187079023a84cb82896741ffbc912a0cbacb6783718b683ef810c90112632d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page