Skip to main content

TA library for Pandas

Project description

bamboo-ta

Bamboo TA

A library with technical analysis indicators for trading. Especially made for use with Pandas dataframes.

license Python Version PyPi Version Package Status Downloads Stars Forks Used By Contributors Issues Closed Issues Support me on Patreon YouTube Channel Subscribers YouTube Channel Views

Installation

Stable version

Install bamboo-ta from Pypi with:

pip install bamboo-ta

Or you can install this directly from the Github repository with the following command:

$ pip install -U git+https://github.com/DutchCryptoDad/bamboo-ta

Development version

The bleeding edge development version can be installed with:

$ pip install -U git+https://github.com/DutchCryptoDad/bamboo-ta.git@development

Using the library

Import the library into your Python scripts or Notebook as follows:

import bamboo_ta as bta

After this, you can use the libraries technical indicators with:

df['lsma'] = bta.calculate_lsma(df, 14)

Example script:

# -*- coding: utf-8 -*-
# Import necessary libraries
import pandas_ta as pta
import bamboo_ta as bta
import pandas as pd
from pandas import DataFrame
import numpy as np

# create dataframe and read the json data in the datasets directory
df = pd.read_json("./testdata/BTC_USDT-1d.json")
# name the columns that are loaded into the dataframe
df.columns = ['date', 'open', 'high', 'low', 'close', 'volume']
# the date column consists of unix time in milliseconds, so this command changes this data into human readable form.
df['date'] = (pd.to_datetime(df['date'], unit='ms'))

print(df)  # This command outputs the dataframe

# Using the pandas_ta library
df['imi_ema'] = pta.ema(close=df['close'], length=7)

df['lsma'] = bta.calculate_lsma(df, 14)  # Using the bamboo_ta library

print(df)

Output:

 /dev
➜  python test.py 
           date      open      high       low     close         volume
0    2017-08-17   4261.48   4485.39   4200.74   4285.08     795.150377
1    2017-08-18   4285.08   4371.52   3938.77   4108.37    1199.888264
2    2017-08-19   4108.37   4184.69   3850.00   4139.98     381.309763
3    2017-08-20   4120.98   4211.08   4032.62   4086.29     467.083022
4    2017-08-21   4069.13   4119.62   3911.79   4016.00     691.743060
...         ...       ...       ...       ...       ...            ...
1967 2023-01-05  16850.36  16879.82  16753.00  16831.85  163473.566410
1968 2023-01-06  16831.85  17041.00  16679.00  16950.65  207401.284150
1969 2023-01-07  16950.31  16981.91  16908.00  16943.57  104526.568800
1970 2023-01-08  16943.83  17176.99  16911.00  17127.83  135155.896950
1971 2023-01-09  17127.83  17398.80  17104.66  17178.26  266211.527230

[1972 rows x 6 columns]
           date      open      high       low     close         volume       imi_ema          lsma
0    2017-08-17   4261.48   4485.39   4200.74   4285.08     795.150377           NaN           NaN
1    2017-08-18   4285.08   4371.52   3938.77   4108.37    1199.888264           NaN           NaN
2    2017-08-19   4108.37   4184.69   3850.00   4139.98     381.309763           NaN           NaN
3    2017-08-20   4120.98   4211.08   4032.62   4086.29     467.083022           NaN           NaN
4    2017-08-21   4069.13   4119.62   3911.79   4016.00     691.743060           NaN           NaN
...         ...       ...       ...       ...       ...            ...           ...           ...
1967 2023-01-05  16850.36  16879.82  16753.00  16831.85  163473.566410  16737.537534  16633.800286
1968 2023-01-06  16831.85  17041.00  16679.00  16950.65  207401.284150  16790.815651  16678.202286
1969 2023-01-07  16950.31  16981.91  16908.00  16943.57  104526.568800  16829.004238  16746.722286
1970 2023-01-08  16943.83  17176.99  16911.00  17127.83  135155.896950  16903.710678  16816.734571
1971 2023-01-09  17127.83  17398.80  17104.66  17178.26  266211.527230  16972.348009  16930.485143

[1972 rows x 8 columns]

Creating the Python pip package (personal notes)

After creating and testing the code, make a Python pip package as follows:

In the library folder, create the package

python3 setup.py sdist bdist_wheel

Before uploading the package to Pypi it is wise to test the package on your system.

Load the package to the system with:

pip install .

After you've checked that everything is worknig correctly, then use the following command to upload to Pypi. You'll have to install twine for this (pip install twine or sudo apt install twine).

# Check first

twine check dist/*

# Test upload first

twine upload -r testpypi dist/*

# Upload to Pypi

twine upload dist/*

Note: uploading new versions requires to delete the older versions from the /dist folder.

Another option is to use the --skip-existing option like this:

twine upload -r --skip-existing testpypi dist/*
twine upload --skip-existing dist/*

Uploading with 2FA enabled

First create an API token (at https://test.pypi.org/manage/account/token/).

Create a file .pypirc in your home folder (e.g. nano $HOME/.pypirc)

Add the given token to the file like this:

[testpypi]
  username = __token__
  password = pypi-AgENdalaljdljhdalkHTaddsdSQtMjBjOS00ZjgxLWIyZDMtYWViMDAwOTk3MWZmAAIqWzMsImU3YjkzMGVmLWQzMFmZkZCJdAAAGIB6NZ-rSrzc8UXj38ijwCRmZwkFLnhhNP

Save the file and reload environment if necessary.

Now you an upload libraries without having to use the password.

Other sources

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bamboo-ta-0.0.3.tar.gz (12.6 kB view details)

Uploaded Source

Built Distribution

bamboo_ta-0.0.3-py3-none-any.whl (12.5 kB view details)

Uploaded Python 3

File details

Details for the file bamboo-ta-0.0.3.tar.gz.

File metadata

  • Download URL: bamboo-ta-0.0.3.tar.gz
  • Upload date:
  • Size: 12.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for bamboo-ta-0.0.3.tar.gz
Algorithm Hash digest
SHA256 f7b8bda961f69750bccd687e8f44fe9a514197fad8a4af2ec7ff0dd8388b8604
MD5 04ac739346abb5fa9a2f0c0815c25a52
BLAKE2b-256 26656d15a098271cff3b0de461052638f698a36f07c6115a1796b90d62830a0d

See more details on using hashes here.

File details

Details for the file bamboo_ta-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: bamboo_ta-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 12.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10

File hashes

Hashes for bamboo_ta-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5e68d272d86d13a4e00d1306aff080b2ada644073e49a4f8b07c444ef14f4fa2
MD5 fd4bd12a51bbfd1b90d972f7d2a1f21b
BLAKE2b-256 e4073b05bd59d3ed6937d514d94d2b2d193be11a653da5e960781cff1fd73c56

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page