Skip to main content

Bayesian model management

Project description

bambi model management (bammm)

Estimating complex models can take time. bammm allows one to save estimated models and to later load them as required (without the need to re-estimate them).

Currently it is build to only work with (generalized) linear models in python that have been esimtated using bambi but in essence it can be used to save samples from any PyMC model.

Functionality

  1. Creation and mangement of database of local models (simple JSON file)
  2. Model (dependent variable, fixed and random effects) and estimation parameters (no chains, samples/chain, cores) specification.
  3. Automatic build of regression equation (input to bambi) using mm.geerate_equation()
  4. Model estimation using mm.estimate_lmm()
  5. Saving (mm.save_model_info()) and updating (mm.update_model_entry()) of estimated model information.
  6. Loading previously esimtated model (mm.estimate_lmm())

Usage

Setup

Install using pip:

pip install bammm-ozika

Load

import bammm.bammm as mm

Full example script can be found here.

Generate your local JSON database

Before first use on a project a local database needs to be generated. Specify a path for the database:

os.chdir(root_dir)
db_path = os.path.join( "demo", "my_project", "databse_name.json")

Initialize database:

mm.models_init(db_path)

Fitting a new linear model

Load database

models = json.load(open(db_path, "r"))

Specify linear model. The idea is to have a specific model name and a "group/family" for each model. bammm will create a folder (model_family) and save data of individual models in there using pickle.

# load data that come with bambi
data = bmb.load_data("sleepstudy")

model_family = "sleepstudy" # this will be used as a folder name to host the models
model_identifier = "maximum_model"
# dependent variable
mod["lmm"]["dep_var"] = "Reaction" # Reaction time
# fixed effects
mod["lmm"]["fxeff"] = ["Days"] # longitudinal data set
# random effects
mod["lmm"]["rneff"] = ["Days|Subject"]
# build equation
mod["lmm"]["eq"] = mm.generate_equation(mod["lmm"]["dep_var"], mod["lmm"]["fxeff"], mod["lmm"]["rneff"])

Specify estimation parameters.

# fitting information
mod["est"]["nchains"] = 2
mod["est"]["nsamples"] = 4000
mod["est"]["ncores"] = 2 # number of cores to be useds in fitting

Specify paths and create relevant strings.

mod = mm.prepare_fit(mod, model_family, model_identifier, models_path)
# save model (it's a good idea to load/save the DB often, especially if one runs multiple models at the same time)
models[mod["name"]] = mod
mm.save_model_info(models, db_path)

Estimate model. This also automatically saves the data to the location specified in models_path

mod, results, m = mm.estimate_lmm(mod, data, override=0)
mm.update_model_entry(models, mod, db_path)

Load previously fitted model

It is rather simple

# load database
models = json.load(open(db_path, "r"))
model_name = "sleepstudy_maximum_model_2_4000" # model estimated above
mod = models[model_name]
# load model
mod, results, m = mm.estimate_lmm(mod, [], override=0)

This might not be the best way to achieve model saving/loading, but it seems to work well (at least for the poor practitioner of statistics that is me).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bammm-ozika-0.0.8.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

bammm_ozika-0.0.8-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file bammm-ozika-0.0.8.tar.gz.

File metadata

  • Download URL: bammm-ozika-0.0.8.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.3

File hashes

Hashes for bammm-ozika-0.0.8.tar.gz
Algorithm Hash digest
SHA256 fe4f3ca740c52ff1006a0dc85bc57aef17f1e34a987d68696e29f6d085010cd0
MD5 e3810edd4ac788c0a4b68705cd8fa0d7
BLAKE2b-256 f6786930abbfb50312d3f6dbbf6dc13ddb24cbd1bff9096d8fa4456f132ee526

See more details on using hashes here.

File details

Details for the file bammm_ozika-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: bammm_ozika-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 5.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.3

File hashes

Hashes for bammm_ozika-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 e57f225f0511a133966e749976d23a18b8b78c1dd88f5ed4de8246a36cc27ea8
MD5 7ffd20cb392f5e87a1e7ec25165dbea2
BLAKE2b-256 dbded49acefb8de1fb5bd90576d07a5c2937b04a7efa97059ecd58a17d4a3110

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page