Skip to main content

A brief description of your module

Project description

This README describes a collection of python scripts for the Bayes Network (BN) structure learning problem collectively called BNOmics. The software allows for a purely data driven BN structure learning and is best used in combination with a python shell, such as Ipython, for on-the-fly experimentation and research. It could, however, be easily used for stand alone scripts such as the included example ( example.py ).

Due to the inherent unpredictability of the demands imposed by the various -Omics (as in genomics or metabolomics, etc.) projects using BNOmics, it is meant to serve as a prototypical research platform, modified upon necessity to address the HPC needs, rather than a narrow purpose, typical desktop application.

Requirements: Python interpreter - required. Numpy module - required. Graphviz - optional but recomended for graphical rendering. GCC - optional but needed for performance boost. make - optional, needed for compilation.

Installation: No particular installation procedure is necessary. However to enable faster compute routines compilation of cpp source in the folder containing this project is necessary. The folder contains Makefile that will tell the compiler what to do as long as 'make' utility and g++ compiler are present. Having navigated to Bnomics folder in the terminal run

touch ofext.cpp
make

This procedure should update C++ extension to the current architechture and make optimized routines available.

Example script: To start with the example please open a terminal and navigate to the BNOmics folder. Once there, you can call example.py as a standard python script with a filename argument:

python example.py african_americans.csv

The two example data files african_americans.csv and european_americans.csv are provided in the collection.

After the execution of example.py completes, the structure of reconstructed BN will be saved in dotfile.dot and can be rendered with graphviz as follows:

dot -Tpdf dotfile.dot -o outpdf.pdf

If Graphviz is properly installed the rendering procedure will be called automatically generating outpdf.pdf upon execution of example.py , and the above manual invocation of the rendering procedure will not be neccessary.

Now you can open outpdf.pdf with any pdf viewer for investigation of the results.

Feel free to open example.py with your editor of choice and view the contents. This file contains the most typical and simple example of a workflow for data driven BN reconstruction. This little script can be easily modified and tuned using the comments provided in the file.

Interactive use: In an interactive environment you can usually examine the contents of the included files as follows:

import bnomics
help(bnomics)
help(bnomics.dutils)
help(bnomics.bnutils)

and so on.

The typical workflow will be identical to the example.py script with the additional benefit of further details and information available for examination. For example, a BN can be modified by hand, its structure can be viewed as a list, a different search method can be applied or even constructed, etc.

//=============================================================
//(c) 2011 Distributed under MIT-style license. 
//(see LICENSE.txt or visit http://opensource.org/licenses/MIT)
//=============================================================

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bandyt-0.5.tar.gz (32.8 kB view details)

Uploaded Source

Built Distribution

bandyt-0.5-py3-none-any.whl (37.8 kB view details)

Uploaded Python 3

File details

Details for the file bandyt-0.5.tar.gz.

File metadata

  • Download URL: bandyt-0.5.tar.gz
  • Upload date:
  • Size: 32.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for bandyt-0.5.tar.gz
Algorithm Hash digest
SHA256 b1538c296bc36302f909e1c3f6207b1e6f5477445ccae5a5045100b6660df871
MD5 a244bd9e5a7f9eac007dadd70a5d1e3f
BLAKE2b-256 d47190018bf78fb9b503210c7b13156a90770456ef4b480a2845fae8569462d8

See more details on using hashes here.

File details

Details for the file bandyt-0.5-py3-none-any.whl.

File metadata

  • Download URL: bandyt-0.5-py3-none-any.whl
  • Upload date:
  • Size: 37.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.9

File hashes

Hashes for bandyt-0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 2052a29bc5bd70fe1c5f73fb89552ac327db05fc6ee9745a715f3d5748a85211
MD5 ec85319231ac0fcfe7f3406e2f888fd6
BLAKE2b-256 cf0be15b4eef32bcd760c334063fc52c9f12931f2b4784798a461066c46f430d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page