light dal package
Project description
## 13/12/2023 - Daniel
## Build for pypi `shell python3 -m pip install --upgrade build python3 -m build python3 -m pip install --upgrade twine `
## Push to the pypi test repository `shell python3 -m twine upload --repository testpypi dist/* `
## Push to the pypi main repository `shell python3 -m twine upload --repository pypi dist/* `
- # banner.connection:
- ## Connection(Object):
ABS class
- ## RelationalConnection(Connection):
ABS class
- ## Storage(Connection):
ABS class
- ## PrintableConnection(Connection):
ABS class
- ## MySqlConnection(RelationalConnection, PrintableConnection)(host, user, passwd, db, ssl_key, ssl_cert, name):
Create Connection object compatible with banner.queries
raises MySQLError for bad connection
- ## PostgresSqlConnection(RelationalConnection, PrintableConnection)(host, user, port=5432, passwd=None, db=None, ssl_key=None, ssl_cert=None, charset=’utf8’, name=None):
Create Connection object compatible with banner.queries
raises MySQLError for bad connection
- ## RedisConnection(Storage, PrintableConnection)(host, port, passwd, db, ssl_key, ssl_cert, name, ttl):
Create CacheConnection object compatible with banner.queries
- # banner.queries.Queries:
- ## CONNECTIONS(conns: Dict[str, Connection] = {}) -> :
Getter/Setter for known(default) Connections dict
- ## CACHE(con: CacheConnection = None):
Getter/Setter for known(default) CacheConnection
- ## simple_query(query: str, w2p_parse: bool = True, connection: Union[Connection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
run a simple string query for Connection
connection=None try to get first known connection, raise KeyError if None found
Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
Cache=False will not cache the result even if Queries.CACHE is set
w2p_parse=True - should parse query according to w2p syntax
- ## describe_table(table: str, connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
Describes a table in connection
Raises OperationalError and KeyError(Failed to find a connection for given key)
- ## describe(connection: Union[RelationalConnection, str] = None) -> pd.DataFrame:
Describe Table names in connection
Raises OperationalError and KeyError(Failed to find a connection for given key)
- ## table_query(table: str, columns: Union[list, str] = ‘*’, condition: str = ‘TRUE’, connection=None, cache_connection=None, ttl=None, raw=False) -> pd.DataFrame:
Queries a given connection for ‘SELECT {columns} FROM {table} WHERE {condition}’
Accepts both column values and labels
raw=True - column names as in db
Queries a given Connection(ip)/str of a known connection (or first known) return result as DataFrame
Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
Cache=False will not cache the result even if Queries.CACHE is set
Raises OperationalError and KeyError(Failed to find a connection for given key)
- ## neware_cache_query(keys: Iterable, condition: str = ‘TRUE’, connection: Union[MySqlConnection, str] = None, cache: Storage = None, ttl: int = None) -> pd.DataFrame:
simplified query to retrieve aggregate cache data by condition
condition is a valid where clause for given connection type
requires keys in the form Iterable(Tuple(ip, device, unit, channel, test)), ex: [(241, 240222, 6, 11, 2818575226)]
Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
Cache=False will not cache the result even if Queries.CACHE is set
- ## neware_query(device: int, unit: int, channel: int, test: int, connection: Union[Connection, str] = None, cache_connection=None, ttl=None, raw=False, dqdv=False, condition: str = ‘1’, temperature: bool = True, cache_data: pd.DataFrame = pd.DataFrame()) -> pd.DataFrame:
query Connection for device, unit, channel, test
connection=None try to get first known connection, raise KeyError if None found
temperature=True - fetch temperature data
raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
dqdv=True -> banner.neware.calc_dq_dv
Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
Cache=False will not cache the result even if Queries.CACHE is set
raises Type err if no data exists
- ## neware_tests_query(table: str, experiments: Union[list, Number, str] = [], templates: Union[list, Number, str] = [], tests: Union[list, Number, str] = [], cells: Union[list,Number, str] = [], condition: str = ‘cycle < 2’, raw=False, dqdv=False, temperature: bool = True, connection: Union[Connection, str] = None, cache_connection=None, ttl=None):
Multi Process Queries.neware_query (number of processes = number of distinct connections found for input)
Queries all available tests for given table AND experiments AND templates AND tests AND cells
Union[list, Number, str] - single/list of numbers or a valid query
temperature=True - fetch temperature data
raw=False - compute temperature, voltage, current aswell as grouping by auxchl_id
dqdv=True -> banner.neware.calc_dq_dv
Cache the result if cache_connection or Queries.CACHE is set (ttl if provided otherwise use CACHE.ttl)
Cache=False will not cache the result even if Queries.CACHE is set
raises Type err if no data exists
- # banner.neware:
- ## NEWARE_STEPS:
Step number : Step Name Dictionary
- ## calculate_neware_columns(data: pd.DataFrame):
calculate neware columns for a valid neware DataFrame
- ## calculate_dq_dv(data: pd.DataFrame, raw=False):
Calculate DQ/DV for a valid neware df
raw=False: remove outliers
- ## merge_cache(data: pd.DataFrame, cache_data: pd.DataFrame):
Given data(neware df), cache_data(neware_cache df), tries to merge cache_data into data
** Raises TypeError and Index Error**
- # banner.utils.web2py:
- ## JOINS:
Default Joins dictionary
Used when calling DataFrame.join_table without specifing how to join
- ## COLUMN_TO_LABEL:
Column : Label Dictionary
- ## LABEL_TO_COLUMN:
Label : Column Dictionary
- # banner.pandas_decorator:
## Added functionality onto Pandas.DataFrame object
- ## DataFrame.table_query
banner.queries.Queries.table_query
- ## DataFrame.calculate_neware_columns
banner.neware.calculate_neware_columns
- ## DataFrame.calculate_dq_dv
banner.neware.calculate_dq_dv
- ## join_table(table: str, columns: Union[list, str] = ‘*’, condition: str = ‘TRUE’, left: Union[str, list, None] = None, right: Union[str, list, None] = None, how: Union[str, None] = None, connection: Union[RelationalConnection, str] = None, raw: bool = False, cache: Storage=None, ttl: Union[bool, None] = None) -> pd.DataFrame:
Given a table, Join its relevant Data with the current table_query DataFrame!
table: any table under the available Connection
columns: select specific columns from the table, default=All
condition: additional filtering condition on merged data
left: columns used to merge left DataFrame, default is picked from banner.utils.web2py.JOINS
right: columns used to merge right DataFrame, default is picked from banner.utils.web2py.JOINS
how: how to merge left and right, default is picked from banner.utils.web2py.JOINS
connection=None try to get first known connection, raise KeyError if None found
raise TypeError If failed to join
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.