Bayesian Approximate Reinforcement Learning (BARL)
Project description
BARL - Bayesian Approximate Reinforcement Learning
This package should serve as a collection of tools to do RL in general and in particular bayesian RL.
The Main Features(Jul 2019):
- estimators
- agents
- environments
- simulations & visualisation
Installation:
PIP:
pip3 install barl
Github:
git clone https://github.com/ai-nikolai/barl
cd barl
pip3 install -e .
Usage:
Testing
cd barl
pytest
Experiments:
cd barl
cd experiments
python3 experiments_mab.py
Scripts:
import barl
env = barl.environments.MultiArmedBandit(arms=4)
agent1 = barl.agents.baselines.RandomActionsSampler(numActions=4)
total, arlist, _ = barl.simulations.run_state_less_agent_and_env( environment=env, agent=agent1, N=100)
barl.utils.plotting.plot_reward_over_time_from_ar(arlist)
Copyright (C) - Nikolai Rozanov 2019-Present
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
barl-0.0.0.5.tar.gz
(7.5 kB
view details)
Built Distribution
barl-0.0.0.5-py3-none-any.whl
(16.3 kB
view details)
File details
Details for the file barl-0.0.0.5.tar.gz
.
File metadata
- Download URL: barl-0.0.0.5.tar.gz
- Upload date:
- Size: 7.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c805df0fa8a131a8f17311ddb699ca208f53fa0bb0bfc8201309e250ef03ddb2 |
|
MD5 | 4b65d8bdf3866886a95e736151f6bde6 |
|
BLAKE2b-256 | 7a899999d24ba329bc2cf871e257929ff4b07f20d9874e5ffd49cf55022c24ac |
File details
Details for the file barl-0.0.0.5-py3-none-any.whl
.
File metadata
- Download URL: barl-0.0.0.5-py3-none-any.whl
- Upload date:
- Size: 16.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5be28e3e9dacb912bfb25f218e4c43c078fe2e572b7420d1258b518472f6baf8 |
|
MD5 | f9b6f2567e35f1b62d7e81c5eb28b3e6 |
|
BLAKE2b-256 | daa763d2117a2e2060ee0205f7268163fbe28c4a9f53ee429b6beb99f5a7c1eb |