Skip to main content

Bayesian Approximate Reinforcement Learning (BARL)

Project description

BARL - Bayesian Approximate Reinforcement Learning

This package should serve as a collection of tools to do RL in general and in particular bayesian RL.

The Main Features(Jul 2019):

  1. estimators
  2. agents
  3. environments
  4. simulations & visualisation

Installation:

PIP:

pip3 install barl

Github:

git clone https://github.com/ai-nikolai/barl
cd barl
pip3 install -e .

Usage:

Testing

cd barl
pytest

Experiments:

cd barl
cd experiments
python3 experiments_mab.py

Scripts:

import barl

env = barl.environments.MultiArmedBandit(arms=4)

agent1 = barl.agents.baselines.RandomActionsSampler(numActions=4)

total, arlist, _ = barl.simulations.run_state_less_agent_and_env( environment=env, agent=agent1, N=100)

barl.utils.plotting.plot_reward_over_time_from_ar(arlist)

Copyright (C) - Nikolai Rozanov 2019-Present

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

barl-0.0.0.5.tar.gz (7.5 kB view details)

Uploaded Source

Built Distribution

barl-0.0.0.5-py3-none-any.whl (16.3 kB view details)

Uploaded Python 3

File details

Details for the file barl-0.0.0.5.tar.gz.

File metadata

  • Download URL: barl-0.0.0.5.tar.gz
  • Upload date:
  • Size: 7.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for barl-0.0.0.5.tar.gz
Algorithm Hash digest
SHA256 c805df0fa8a131a8f17311ddb699ca208f53fa0bb0bfc8201309e250ef03ddb2
MD5 4b65d8bdf3866886a95e736151f6bde6
BLAKE2b-256 7a899999d24ba329bc2cf871e257929ff4b07f20d9874e5ffd49cf55022c24ac

See more details on using hashes here.

File details

Details for the file barl-0.0.0.5-py3-none-any.whl.

File metadata

  • Download URL: barl-0.0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 16.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.5

File hashes

Hashes for barl-0.0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5be28e3e9dacb912bfb25f218e4c43c078fe2e572b7420d1258b518472f6baf8
MD5 f9b6f2567e35f1b62d7e81c5eb28b3e6
BLAKE2b-256 daa763d2117a2e2060ee0205f7268163fbe28c4a9f53ee429b6beb99f5a7c1eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page