Skip to main content

This is a secondary package of OpenCV,for manage image data

Project description

base_image

对opencv_python常用接口的二次开发

建议 opencv version >= 4.5.5(不同opencv版本的python绑定,函数名可能会不同)

Example

Create

  1. 默认方式创建图片对象
import cv2
from baseImage import Image
from baseImage.constant import Place
    
Image(data='tests/image/0.png')  # 使用默认方式创建
  1. 通过其他参数,调整图片参数
  • 使用place参数,修改数据格式
    • Ndarray: 格式为numpy.ndarray格式

    • Umat: python的绑定不多,没有ndarray灵活,可以用于opencl加速

    • GpuMat: opencv的cuda格式,需要注意显存消耗

      • 可以通过常量Default_Pool设定缓冲区
      import cv2
      from baseImage import Setting
      
      cv2.cuda.setBufferPoolUsage(True)
      cv2.cuda.setBufferPoolConfig(cv2.cuda.getDevice(), 1024 * 1024 * (3 + 3), 1)
      
      stream = cv2.cuda.Stream()
      pool = cv2.cuda.BufferPool(stream)
      
      Setting.Default_Stream = stream
      Setting.Default_Pool = pool
      
import cv2
from baseImage import Image
from baseImage.constant import Place
    
Image(data='tests/image/0.png', place=Place.Ndarray)  # 使用numpy
Image(data='tests/image/0.png', place=Place.UMat)  # 使用Umat
Image(data='tests/image/0.png', place=Place.GpuMat)  # 使用cuda
  • 使用dtype,修改数据类型
import cv2
import numpy as np
from baseImage.utils.api import cvType_to_npType, npType_to_cvType
from baseImage import Image
    
Image(data='tests/image/0.png', dtype=np.uint8)
Image(data='tests/image/0.png', dtype=np.int8)
Image(data='tests/image/0.png', dtype=np.uint16)
Image(data='tests/image/0.png', dtype=np.int16)
Image(data='tests/image/0.png', dtype=np.int32)
Image(data='tests/image/0.png', dtype=np.float32)
Image(data='tests/image/0.png', dtype=np.float64)
# cvType_to_npType和npType_to_cvType提供了numpy转opencv数据格式的方法, cv的数据格式意义自行百度
  • clone,用于处理是否拷贝原数据
import cv2
import numpy as np
from baseImage import Image, Rect

img1 = Image(data='tests/image/0.png')
img2 = Image(img1, clone=False)
img2.rectangle(rect=Rect(0, 0, 200, 200), color=(255, 0, 0), thickness=-1)
img2.imshow('img2')
img1.imshow('img1')
cv2.waitKey(0)

property

  1. shape: 获取图片的长、宽、通道数
from baseImage import Image

img = Image(data='tests/image/0.png')
print(img.shape)
# expect output
#       (1037, 1920, 3)
  1. size: 获取图片的长、宽
from baseImage import Image

img = Image(data='tests/image/0.png')
print(img.size)
# expect output
#       (1037, 1920)
  1. channels: 获取图片的通道数量
from baseImage import Image

img = Image(data='tests/image/0.png')
print(img.channels)
# expect output
#       3
  1. dtype: 获取图片的数据类型
from baseImage import Image

img = Image(data='tests/image/0.png')
print(img.dtype)
# expect output
#       numpy.uint8
  1. place: 获取图片的数据格式
from baseImage import Image
from baseImage.constant import Place

img = Image(data='tests/image/0.png', place=Place.Ndarray)
print(img.place == Place.Ndarray)
# expect output
#       True
  1. data: 获取图片数据
from baseImage import Image

img = Image(data='tests/image/0.png')
print(img.data)

Function

  1. dtype_convert: 数据类型转换
  • 将修改原图像数据
from baseImage import Image
import numpy as np

img = Image(data='tests/image/0.png', dtype=np.uint8)
print(img.dtype)
img.dtype_convert(dtype=np.float32)
print(img.dtype)
  1. place_convert: 数据格式转换
  • 将修改原图像数据
from baseImage import Image
from baseImage.constant import Place

img = Image(data='tests/image/0.png', place=Place.Ndarray)
print(img.place == Place.Ndarray)
img.place_convert(place=Place.UMat)
print(img.place == Place.Ndarray)
print(img.place == Place.UMat)
  1. clone: 克隆一个新的图片对象
from baseImage import Image
from baseImage.constant import Place

img = Image(data='tests/image/0.png', place=Place.Ndarray)
img2 = img.clone()
print(img == img2)
  1. rotate: 旋转图片, 现在只支持opencv自带的三个方向
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
img.rotate(code=cv2.ROTATE_180).imshow('180')
img.rotate(code=cv2.ROTATE_90_CLOCKWISE).imshow('90_CLOCKWISE')
img.rotate(code=cv2.ROTATE_90_COUNTERCLOCKWISE).imshow('90_COUNTERCLOCKWISE')
cv2.waitKey(0)
  1. resize: 缩放图像
from baseImage import Image

img = Image(data='tests/image/0.png')
new_img = img.resize(200, 200)
print(new_img.size)
  1. cvtColor: 转换图片颜色空间
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
new_img = img.cvtColor(cv2.COLOR_BGR2GRAY)
new_img.imshow()
cv2.waitKey(0)
  1. crop: 裁剪图片
from baseImage import Image, Rect
import cv2

img = Image(data='tests/image/0.png')
new_img = img.crop(rect=Rect(0, 0, 400, 400))
new_img.imshow()
cv2.waitKey(0)
  1. threshold: 二值化图片
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
new_img = img.threshold(thresh=0, maxval=255, code=cv2.THRESH_OTSU)
new_img.imshow()
cv2.waitKey(0)
  1. rectangle: 在图像上画出矩形
  • 会在原图上进行修改
from baseImage import Image, Rect
import cv2

img = Image(data='tests/image/0.png')
img.rectangle(rect=Rect(100, 100, 300, 300), color=(255, 0, 0), thickness=-1)
img.imshow()
cv2.waitKey(0)
  1. copyMakeBorder: 扩充图片边缘
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
new_img = img.copyMakeBorder(top=10, bottom=10, left=10, right=10, borderType=cv2.BORDER_REPLICATE)
new_img.imshow()
cv2.waitKey(0)
  1. gaussianBlur: 高斯模糊
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
new_img = img.gaussianBlur(size=(11, 11), sigma=1.5, borderType=cv2.BORDER_DEFAULT)
new_img.imshow()
cv2.waitKey(0)
  1. warpPerspective: 透视变换
from baseImage import Image, Size
import cv2
import numpy as np

img = Image(data='tests/image/0.png')
point_1 = np.float32([[0, 0], [100, 0], [0, 200], [100, 200]])
point_2 = np.float32([[0, 0], [50, 0], [0, 100], [50, 100]])
matrix = cv2.getPerspectiveTransform(point_1, point_2)
size = Size(50, 100)

new_img = img.warpPerspective(matrix, size=size)
new_img.imshow()
cv2.waitKey(0)
  1. bitwise_not: 反转图片颜色
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
new_img = img.bitwise_not()
new_img.imshow()
cv2.waitKey(0)
  1. imshow: 以GUI显示图片
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png')
img.imshow('img1')
cv2.waitKey(0)
  1. imwrite: 将图片保存到指定路径
from baseImage import Image
import cv2

img = Image(data='tests/image/0.png').cvtColor(cv2.COLOR_BGR2GRAY)
img.imwrite('tests/image/0_gray.png')
  1. split: 拆分图像通道
  • 会直接返回拆分后的数据,不是Image类型
from baseImage import Image

img = Image(data='tests/image/0.png')
img_split = img.split()

Extra

  1. SSIM: 图片结构相似性
    • resize: 图片缩放大小
from baseImage import SSIM, Image

ssim = SSIM(resize=(600, 600))
img1 = Image('tests/image/0.png')
img2 = Image('tests/image/0.png')
print(ssim.ssim(im1=img1, im2=img2))
  1. image_diff: 基于SSIM的图片差异对比
from baseImage import ImageDiff, Image
import cv2

diff = ImageDiff()

img1 = Image('tests/image/0.png')
img2 = Image('tests/image/1.png') 
cnts = diff.diff(img1, img2)
imageA = img1.data.copy()
imageB = img2.data.copy()
print(len(cnts))
for c in cnts:
    (x, y, w, h) = cv2.boundingRect(c)
    cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)

cv2.imshow("Original", imageA)
cv2.imshow("Modified", imageB)
cv2.waitKey(0)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baseImage-2.1.6.tar.gz (29.1 kB view details)

Uploaded Source

File details

Details for the file baseImage-2.1.6.tar.gz.

File metadata

  • Download URL: baseImage-2.1.6.tar.gz
  • Upload date:
  • Size: 29.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for baseImage-2.1.6.tar.gz
Algorithm Hash digest
SHA256 d47e8105a8992e070607efa4343b2f1d3f6baf91d176021ca00c2e43c6e0f10f
MD5 9b46d5bbdc330938fa3dc6ab10698622
BLAKE2b-256 b0cdcca83858890d69585a01f6a2fc5c253357f2f7e0642d4aebc555a9de01b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page