Skip to main content

very basic functions for data pre-processing and visualization

Project description

Help on module basic_functions:

FUNCTIONS

add_arrow(ax, start, end, arrowprops={'facecolor': 'black', 'width': 1.8, 'alpha': 0.5})
    Add an arrow to the `ax` axis.
    
    Parameters
    ----------
    ax : matplotlib.axes._subplots.AxesSubplot
        The axis to add the arrow to.
    start : tuple of floats
        The starting coordinates of the arrow in (x, y) format.
    end : tuple of floats
        The ending coordinates of the arrow in (x, y) format.
    arrowprops : dict, optional
        A dictionary of properties for the arrow, by default 
        {'facecolor': 'black', 'width': 1.8, 'alpha': 0.5}.
        
    Returns
    -------
    None


------------------------------------------------------------------------------------------
add_dummy_sub_legend(ax, colors, lenf, label_base='f')
    Add a sub-legend to the plot for the specified colors.
    
    Parameters:
    - ax (matplotlib.axes.Axes): The matplotlib axes to add the sub-legend to.
    - colors (list): A list of colors to add to the sub-legend.
    - lenf (int): The number of colors to include in the sub-legend.
    - label_base (str): The base string for the label of each color. (default: 'f')
    
    Returns: None

------------------------------------------------------------------------------------------
add_labels(ax, xlabel='X', ylabel='Y', zlabel='', title='', xlim=None, ylim=None, zlim=None, xticklabels=array([None], dtype=object), yticklabels=array([None], dtype=object), xticks=[], yticks=[], legend=[], ylabel_params={}, zlabel_params={}, xlabel_params={}, title_params={})
    Add labels, titles, limits, etc. to a figure.
    
    Parameters:
    ax (subplot): The subplot to be edited.
    xlabel (str, optional): The label for the x-axis. Defaults to 'X'.
    ylabel (str, optional): The label for the y-axis. Defaults to 'Y'.
    zlabel (str, optional): The label for the z-axis. Defaults to ''.
    title (str, optional): The title for the plot. Defaults to ''.
    xlim (list or tuple, optional): The limits for the x-axis. Defaults to None.
    ylim (list or tuple, optional): The limits for the y-axis. Defaults to None.
    zlim (list or tuple, optional): The limits for the z-axis. Defaults to None.
    xticklabels (array, optional): The labels for the x-axis tick marks. Defaults to np.array([None]).
    yticklabels (array, optional): The labels for the y-axis tick marks. Defaults to np.array([None]).
    xticks (list, optional): The positions for the x-axis tick marks. Defaults to [].
    yticks (list, optional): The positions for the y-axis tick marks. Defaults to [].
    legend (list, optional): The legend for the plot. Defaults to [].
    ylabel_params (dict, optional): Additional parameters for the y-axis label. Defaults to {}.
    zlabel_params (dict, optional): Additional parameters for the z-axis label. Defaults to {}.
    xlabel_params (dict, optional): Additional parameters for the x-axis label. Defaults to {}.
    title_params (dict, optional): Additional parameters for the title. Defaults to {}.

------------------------------------------------------------------------------------------
cal_next_FHN(v, w, dt=0.01, max_t=300, I_ext=0.5, b=0.7, a=0.8, tau=20)
    Calculate next v and w values for FitzHugh-Nagumo dynamics
    Inputs:
        v: current v value
        w: current w value
        dt: time step
        max_t: maximum time
        I_ext: external current
        b: model parameter
        a: model parameter
        tau: model parameter
    Returns:
        v_next: next v value
        w_next: next w value

------------------------------------------------------------------------------------------
checkEmptyList(obj)
    Parameters
    ----------
    obj : any type
    
    Returns
    -------
    Boolean variable (whether obj is a list)

------------------------------------------------------------------------------------------
check_save_name(save_name, invalid_signs='!@#$%^&*.,:;', addi_path=[], sep='\\')
    Check if the given file name is valid and returns the final file name.
    The function replaces invalid characters in the file name with underscores ('_').
    
    Parameters:
    save_name (str): The name of the file to be saved.
    invalid_signs (str, optional): A string of invalid characters. Defaults to '!@#$%^&*.,:;'.
    addi_path (list, optional): A list of additional paths to be appended to the file name. Defaults to [].
    sep (str, optional): The separator used between different elements of the path. Defaults to the system separator.
    
    Returns:
    str: The final file name with invalid characters replaced and with additional path appended if provided.

------------------------------------------------------------------------------------------
claculate_percent_close(reco, real, epsilon_close=0.1, return_quantiles=False, quantiles=[0.05, 0.95])
    Calculate the ratio of close (within a specific distance) points among all dynamics' points.
    
    Parameters:
    -----------
    reco: k x T numpy array
        The reconstructed dynamics matrix.
    real: k x T numpy array
        The real dynamics matrix (ground truth).
    epsilon_close: float, optional (default: 0.1)
        The threshold for distance.
    return_quantiles: bool, optional (default: False)
        Whether to return confidence interval values.
    quantiles: list of float, optional (default: [0.05, 0.95])
        The lower and higher limits for the quantiles.
    
    Returns:
    --------
    mean_close: float
        The mean of the close enough points.
    q1: float
        The first quantile (only returned if `return_quantiles` is True).
    q2: float
        The second quantile (only returned if `return_quantiles` is True).

------------------------------------------------------------------------------------------
create_FHN(dt=0.01, max_t=100, I_ext=0.5, b=0.7, a=0.8, tau=20, v0=-0.5, w0=0, params={'exp_power': 0.9, 'change_speed': False})
    Create the FitzHugh-Nagumo dynamics
    Inputs:
        dt: time step
        max_t: maximum time
        I_ext: external current
        b: model parameter
        a: model parameter
        tau: model parameter
        v0: initial condition for v
        w0: initial condition for w
        params: dictionary of additional parameters
            exp_power: power to raise time to for non-uniform time
            change_speed: Boolean to determine whether to change time speed
    Returns:
        v_full: list of v values at each time step
        w_full: list of w values at each time step

------------------------------------------------------------------------------------------
create_ax(ax, nums=(1, 1), size=(10, 10), proj='d2', return_fig=False, sharey=False, sharex=False, fig=[])
    Create axes in the figure for plotting.
    
    Parameters:
    ax (list or Axes): List of Axes objects or a single Axes object
    nums (tuple): Number of rows and columns for the subplots (default (1,1))
    size (tuple): Size of the figure (default (10,10))
    proj (str): Projection type ('d2' for 2D or 'd3' for 3D) (default 'd2')
    return_fig (bool): Return the figure object in addition to the Axes object (default False)
    sharey (bool): Share y axis between subplots (default False)
    sharex (bool): Share x axis between subplots (default False)
    fig (Figure): Figure object
    
    Returns:
    Axes or tuple: The Axes object(s) for plotting

create_colors(len_colors, perm=[0, 1, 2])
    Create a set of discrete colors with a one-directional order
    Input: 
        len_colors = number of different colors needed
    Output:
        3 X len_colors matrix decpiting the colors in the cols

------------------------------------------------------------------------------------------
create_dynamics(type_dyn='cyl', max_time=1000, dt=0.01, change_speed=False, t_speed=<ufunc 'exp'>, axis_speed=[], t_speed_params={}, to_cent=False, return_3d=False, return_additional=False, params_ex={})
    Create ground truth dynamics
    dyn_type options:
        cyl
        f_spiral
        df_spiral
------------------------------------------------------------------------------------------    
create_lorenz_mat(t=[], initial_conds=(0.0, 1.0, 1.05), txy=[])
    Create the lorenz dynamics

------------------------------------------------------------------------------------------
create_orth_F(num_subdyns, num_neurons, evals=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], seed_f=0, dist_type='random')
    Create orthogonal matrices.
    
    Parameters:
    num_subdyns (int): Number of sub-dynamics
    num_neurons (int): Number of neurons
    evals (list): List of eigenvalues.
    seed_f (int): Seed for the random number generator (default 0)
    dist_type (str): Distribution type ('random')
    
    Returns:
    list: List of orthogonal matrices

------------------------------------------------------------------------------------------
create_rotation_mat(theta=0, axes='x', dims=3)
    Create a rotation matrix based on the given parameters.
    
    Parameters:
    theta (float, optional): Angle in radians for rotation. Default is 0.
    axes (str, optional): Axis for rotation. Must be one of 'x', 'y' or 'z'. Default is 'x'.
    dims (int, optional): Dimension of the rotation. Must be either 2 or 3. Default is 3.
    
    Returns:
    numpy.ndarray: Rotation matrix of shape (dims, dims).
    
    Raises:
    ValueError: If dims is not 2 or 3.

------------------------------------------------------------------------------------------
find_closest(vec1, vec2, metric='mse')
    Find the closest elements in vec2 for each element in vec1.
    
    Parameters:
    vec1 (ndarray): 1-D numpy array
    vec2 (ndarray): 1-D numpy array
    metric (str): Metric to use for comparison, 'mse' by default
    
    Returns:
    tuple:
        - ndarray: closest elements in vec2 for each element in vec1
        - ndarray: indices of closest elements in vec2 for each element in vec1
    
    Example:
        find_closest([1, 2, 3], [0, 4, 5]) -> ([0, 4, 5], [0, 1, 2])

------------------------------------------------------------------------------------------
find_dominant_row(coefficients)
    This function returns the row index of the largest absolute value of each column in the input 2D numpy array "coefficients".
    
    Inputs:
        coefficients - a 2D numpy array of shape (m, n) where m is the number of rows and n is the number of columns.
        
    Outputs:
        domi - a 1D numpy array of shape (n,) where each element is an integer representing the row index of the largest absolute value of each column.

------------------------------------------------------------------------------------------

find_perpendicular(d1, d2, perp_length=1, prev_v=[], next_v=[], ref_point=[], choose_meth='intersection', initial_point='mid', direction_initial='low', return_unchose=False, layer_num=0)
    IT IS AN INTER FUNCTION - DO NOT USE IT BY ITSELF
    This function find the 2 point of the orthogonal vector to a vector defined by points d1,d2
    d1 =                first data point
    d2 =                second data point
    perp_length =       desired width
    prev_v =            previous value of v. Needed only if choose_meth == 'prev'
    next_v =            next value of v. Needed only if choose_meth == 'prev'
    ref_point =         reference point for the 'smooth' case, or for 2nd+ layers
    choose_meth =       'intersection' (eliminate intersections) OR 'smooth' (smoothing with previous prediction) OR 'prev' (eliminate convexity)
    direction_initial = to which direction take the first perp point  
    return_unchose =    whether to return unchosen directions

------------------------------------------------------------------------------------------    
flip_power(x1, x2)
    This function takes two arguments, x1 and x2, and returns the result of x2 raised to the power of x1 using the numpy.power function.

------------------------------------------------------------------------------------------
init_mat(size_mat, r_seed=0, dist_type='norm', init_params={'loc': 0, 'scale': 1}, normalize=False)
    This is an initialization function to initialize matrices. 
    Inputs:
      size_mat    = 2-element tuple or list, describing the shape of the mat
      r_seed      = random seed (should be integer)
      dist_type   = distribution type for initialization; can be 'norm' (normal dist), 'uni' (uniform dist),'inti', 'sparse', 'regional', 'zeros'
      init_params = a dictionary with params for initialization. The keys depends on 'dist_type'.
                    keys for norm -> ['loc','scale']
                    keys for inti and uni -> ['low','high']
                    keys for sparse -> ['k'] -> number of non-zeros in each row
                    keys for regional -> ['k'] -> repeats of the sub-dynamics allocations
      normalize   = whether to normalize the matrix
    Output:
        the random matrix with size 'size_mat'

------------------------------------------------------------------------------------------
lists2list(xss)
    Flatten a list of lists into a single list.
    
    Parameters
    ----------
    xss : list of lists
        The list of lists to be flattened.
    
    Returns
    -------
    list
        The flattened list.

------------------------------------------------------------------------------------------
load_mat_file(mat_name, mat_path='', sep='\\')
    Load a MATLAB `.mat` file. Useful for uploading the C. elegans data.
    
    Parameters:
    -----------
    mat_name: str
        The name of the MATLAB file.
    mat_path: str, optional (default: '')
        The path to the MATLAB file.
    sep: str, optional (default: the system separator)
        The separator to use in the file path.
    
    Returns:
    --------
    data_dict: dict
        A dictionary containing the contents of the MATLAB file.

------------------------------------------------------------------------------------------
load_pickle(path)
    Load a pickled object from disk.
    
    Parameters:
    path (str): The path to the pickled object.
    
    Returns:
    dct (obj): The loaded object.

------------------------------------------------------------------------------------------
load_vars(folders_names, save_name, sep='\\', ending='.pkl', full_name=False)
    Load results previously saved.
    
    Parameters:
    folders_names (str/list): List of folders to form the path or a string representation of the path
    save_name (str): Name of the saved file
    sep (str): Separator to join the folders
    ending (str): File extension of the saved file
    full_name (bool): If True, folders_names and sep are ignored
    
    Example:
        load_vars('' ,  'save_c.pkl' ,sep=sep , ending = '.pkl',full_name = False)

------------------------------------------------------------------------------------------
lorenz(x, y, z, s=10, r=25, b=2.667)
    Given:
       x, y, z: a point of interest in three dimensional space
       s, r, b: parameters defining the lorenz attractor
    Returns:
       x_dot, y_dot, z_dot: values of the lorenz attractor's partial
           derivatives at the point x, y, z

------------------------------------------------------------------------------------------
mean_change(signal, axis=0)
    Calculate the mean change of the signal along the specified axis.
    
    Parameters
    ----------
    signal : numpy.ndarray
        The signal data.
    axis : int, optional
        The axis along which the mean change is calculated, by default 0.
    
    Returns
    -------
    numpy.ndarray
        The mean change of the signal.

------------------------------------------------------------------------------------------
min_dist(dotA1, dotA2, dotB1, dotB2, num_sects=500)
    Calculates the minimum euclidean distance between two discrete lines (e.g. where they intersect?).
    Inputs:
        dotA1: Tuple of x,y coordinate of first point on line A
        dotA2: Tuple of x,y coordinate of second point on line A
        dotB1: Tuple of x,y coordinate of first point on line B
        dotB2: Tuple of x,y coordinate of second point on line B
        num_sects: Number of sections the lines should be divided into to calculate distance
        
    Returns:
        List of minimum distances between two lines.

------------------------------------------------------------------------------------------
movmfunc(func, mat, window=3, direction=0, dist='uni')
    moving window with applying the function func on the matrix 'mat' towrads the direction 'direction'
    dist: can be 'uni' (uniform) or 'gaus' (Gaussian)
    
    Calculates the moving window with the application of the given function `func` on the matrix `mat` in the direction `direction`.
    
    Parameters:
    - func (callable): The function to apply.
    - mat (numpy.ndarray): The matrix to apply the function to.
    - window (int): The size of the moving window. (default: 3)
    - direction (int): The direction to apply the moving window. 0 for row-wise and 1 for column-wise. (default: 0)
    - dist (str): The distribution to use for weighting. Can be 'uni' for uniform or 'gaus' for Gaussian. (default: 'uni')
    
    Returns:
    numpy.ndarray: The result of applying the moving window to `mat`.
    
    Example:
    >>> import numpy as np
    >>> def myfunc(arr, axis=None):
    ...     return np.sum(arr, axis=axis)
    >>> mat = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
    >>> movmfunc(myfunc, mat, window=3, direction=0, dist='uni')
    array([[ 6.,  9., 12.],
           [15., 18., 21.],
           [ 9., 12., 15.]])

------------------------------------------------------------------------------------------
norm_coeffs(coefficients, type_norm, same_width=True, width_des=0.7, factor_power=0.9, min_width=0.01)
    Normalize the coefficients according to the specified type of normalization.
    
    Parameters
    ----------
    coefficients : numpy.ndarray
        The coefficients to be normalized.
    type_norm : str
        The type of normalization to be applied. Can be 'sum_abs', 'norm', 'abs' or 'no_norm'.
    same_width : bool, optional
        Whether to enforce the same width for all coefficients, by default True.
    width_des : float, optional
        The desired width, by default 0.7.
    factor_power : float, optional
        The power factor to apply, by default 0.9.
    min_width : float, optional
        The minimum width allowed, by default 0.01.
    
    Returns
    -------
    numpy.ndarray
        The normalized coefficients.
    
    Raises
    ------
    NameError
        If the `type_norm` value is not one of the allowed values ('sum_abs', 'norm', 'abs' or 'no_norm').

------------------------------------------------------------------------------------------
norm_mat(mat, type_norm='evals', to_norm=True)
    This function comes to norm matrices by the highest eigen-value
    Inputs:
        mat       = the matrix to norm
        type_norm = what type of normalization to apply. Can be 'evals' (divide by max eval), 'max' (divide by max value), 'exp' (matrix exponential)
        to_norm   = whether to norm or not to.
    Output:  
        the normalized matrix

------------------------------------------------------------------------------------------
norm_over_time(coefficients, type_norm='normal')
    Normalize coefficients over time
    Inputs:
        coefficients: array of coefficients
        type_norm: type of normalization
            'normal': standard normalization
    Returns:
        coefficients_norm: normalized coefficients

------------------------------------------------------------------------------------------
nullify_part(f, axis='both', percent0=80)
    Nullify a part of a matrix.
    
    Parameters:
    f (numpy array): The input matrix
    axis (str or int): The axis along which to perform the operation ('0', '1', or 'both') (default 'both')
    percent0 (int): The percentile value used to determine which values to nullify (default 80)
    
    Returns:
    numpy array: The input matrix with the specified values set to 0

------------------------------------------------------------------------------------------
plot_3d_color_scatter(latent_dyn, coefficients, ax=[], figsize=(15, 10), delta=0.4, colors=[])
    Plot a 3D color scatter plot.
    
    Parameters
    ----------
    latent_dyn : numpy.ndarray
        A 3xN numpy array representing the latent dynamics.
    coefficients : numpy.ndarray
        A KxN numpy array representing the coefficients.
    ax : matplotlib.axes._subplots.AxesSubplot, optional
        A 3D axis to plot on, by default []
    figsize : tuple, optional
        The size of the figure, by default (15, 10)
    delta : float, optional
        The delta between each row, by default 0.4
    colors : list of str, optional
        The colors for each row, by default []
    
    Returns
    -------
    None

------------------------------------------------------------------------------------------
plot_multi_colors(store_dict, min_time_plot=0, max_time_plot=-100, colors=['green', 'red', 'blue'], ax=[], fig=[], alpha=0.99, smooth_window=3, factor_power=0.9, coefficients_n=[], to_scatter=False, to_scatter_only_one=False, choose_meth='intersection', title='')
    store_dict is a dictionary with the high estimation results. 
    example:        
        store_dict , coefficients_n = calculate_high_for_all(coefficients,choose_meth = 'intersection',width_des = width_des, latent_dyn = latent_dyn, direction_initial = direction_initial,factor_power = factor_power, return_unchose=True)

------------------------------------------------------------------------------------------
quiver_plot(sub_dyn=[], xmin=-5, xmax=5, ymin=-5, ymax=5, ax=[], chosen_color='red', alpha=0.4, w=0.02, type_plot='quiver', zmin=-5, zmax=5, cons_color=False, return_artist=False, xlabel='x', ylabel='y', quiver_3d=False, inter=2, projection=[0, 1])
    Plots a quiver or stream plot on the specified axis.
    
    Parameters
    ----------
    sub_dyn: numpy.ndarray, default: []
        The matrix whose eigenvectors need to be plotted. If an empty list is provided, the default sub_dyn will be set to [[0,-1],[1,0]]
    xmin: float, default: -5
        The minimum value for x-axis.
    xmax: float, default: 5
        The maximum value for x-axis.
    ymin: float, default: -5
        The minimum value for y-axis.
    ymax: float, default: 5
        The maximum value for y-axis.
    ax: matplotlib.axes._subplots.AxesSubplot or list, default: []
        The axis on which the quiver or stream plot will be plotted. If a list is provided, a new figure will be created.
    chosen_color: str or list, default: 'red'
        The color of the quiver or stream plot. 
    alpha: float, default: 0.4
        The alpha/transparency value of the quiver or stream plot.
    w: float, default: 0.02
        The width of the arrows in quiver plot.
    type_plot: str, default: 'quiver'
        The type of plot. Can either be 'quiver' or 'streamplot'.
    zmin: float, default: -5
        The minimum value for z-axis (for 3D plots).
    zmax: float, default: 5
        The maximum value for z-axis (for 3D plots).
    cons_color: bool, default: False
        If True, a constant color will be used for the stream plot. If False, the color will be proportional to the magnitude of the matrix.
    return_artist: bool, default: False
        If True, the artist instance is returned.
    xlabel: str, default: 'x'
        Label for x-axis.
    ylabel: str, default: 'y'
        Label for y-axis.
    quiver_3d: bool, default: False
        If True, a 3D quiver plot will be generated.
    inter: float, default: 2
        The step size for the grids in 3D plots.
    projection: list, default: [0,1]
        The indices of the columns in sub_dyn that will be used for plotting.
        
    Returns
    -------
    h: matplotlib.quiver.Quiver or matplotlib.streamplot.Streamplot
        The artist instance, if return_artist is True.

------------------------------------------------------------------------------------------    
red_mean(mat, axis=1)
    Subtract the mean of each row or column in a matrix.
    
    Parameters:
    mat (np.ndarray): The input matrix.
    axis (int, optional): The axis along which the mean should be computed. Default is 1 (mean of each row).
    
    Returns:
    np.ndarray: The matrix with each row or column mean subtracted.

------------------------------------------------------------------------------------------
relative_eror(reco, real, return_mean=True, func=<function nanmean at 0x000001AADA09DA20>)
    Calculate the relative reconstruction error
    Inputs:
        reco: k X T reconstructed dynamics matrix
        real: k X T real dynamics matrix (ground truth)
        return_mean: reaturn the average of the reconstruction error over time
        func: the function to apply on the relative error of each point
    Output:
        the relative error (or the mean relative error over time if return_mean)

------------------------------------------------------------------------------------------
remove_background(ax, grid=False, axis_off=True)
    Remove the background of a figure.
    
    Parameters:
    ax (subplot): The subplot to be edited.
    grid (bool, optional): Whether to display grid lines. Defaults to False.
    axis_off (bool, optional): Whether to display axis lines. Defaults to True.

------------------------------------------------------------------------------------------
remove_edges(ax, include_ticks=False, top=False, right=False, bottom=False, left=False)
    Remove the specified edges (spines) of the plot and optionally the ticks of the plot.
    
    Parameters
    ----------
    ax : matplotlib.axes.Axes
        The matplotlib axes object of the plot.
    include_ticks : bool, optional
        Whether to include the ticks, by default False.
    top : bool, optional
        Whether to remove the top edge, by default False.
    right : bool, optional
        Whether to remove the right edge, by default False.
    bottom : bool, optional
        Whether to remove the bottom edge, by default False.
    left : bool, optional
        Whether to remove the left edge, by default False.
    
    Returns
    -------
    None

------------------------------------------------------------------------------------------
rgb_to_hex(rgb_vec)
    Convert a RGB vector to a hexadecimal color code.
    
    Parameters:
    rgb_vec (list): A 3-element list of floats representing the red, green, and blue components of the color. The values should be between 0 and 1.
    
    Returns:
    str: The hexadecimal color code as a string.
    
    Example:
    >>> rgb_to_hex([0.5, 0.2, 0.8])
    '#8033CC'
------------------------------------------------------------------------------------------    
saveLoad(opt, filename)
    Save or load a global variable 'calc'
    
    Parameters
    ----------
    opt : str
        the option, either "save" or "load"
    filename : str
        the name of the file to save or load from
        
    Returns
    -------
    None

------------------------------------------------------------------------------------------
save_file_dynamics(save_name, folders_names, to_save=[], invalid_signs='!@#$%^&*.,:;', sep='\\', type_save='.npy')
    Save dynamics & model results to disk.
    
    Parameters:
    save_name (str): The name of the file to save.
    folders_names (List[str]): List of folder names where the file should be saved.
    to_save (List, optional): List of values to save. Defaults to [].
    invalid_signs (str, optional): String of invalid characters to be removed from the save name. Defaults to '!@#$%^&*.,:;'.
    sep (str, optional): Separator to use when joining `folders_names`. Defaults to `os.sep`.
    type_save (str, optional): The file format to save the data in. Valid options are '.npy' and '.pkl'. Defaults to '.npy'.
    
    Returns:
    None

------------------------------------------------------------------------------------------
sigmoid(x, std=1)
    This function computes the sigmoid function of a given input x, with a standard deviation "std". 
    Parameters
    ----------
    x : np.array / list
    std :  The default is 1.
    
    Returns
    -------
    np.array
        The sigmoid function maps any input value to the range of 0 and 1, making it useful for binary classification problems and as an activation function in neural networks.

------------------------------------------------------------------------------------------
spec_corr(v1, v2, to_abs=True)
    Compute the absolute value of the correlation between two arrays.
    
    Parameters:
    - v1 (numpy.ndarray): The first array to compute the correlation between.
    - v2 (numpy.ndarray): The second array to compute the correlation between.
    - to_abs (bool): Whether to compute the absolute value of the correlation (default: True).
    
    Returns:
    - float: The absolute value of the correlation between `v1` and `v2`.

------------------------------------------------------------------------------------------
str2bool(str_to_change)
    Transform a string representation of a boolean value to a boolean variable.
    
    Parameters:
    str_to_change (str): String representation of a boolean value
    
    Returns:
    bool: Boolean representation of the input string
    
    Example:
        str2bool('true') -> True

------------------------------------------------------------------------------------------
visualize_dyn(dyn, ax=[], params_plot={}, turn_off_back=False, marker_size=10, include_line=False, color_sig=[], cmap='cool', return_fig=False, color_by_dominant=False, coefficients=[], figsize=(5, 5), colorbar=False, colors=[], vmin=None, vmax=None, color_mix=False, alpha=0.4, colors_dyns=array(['r', 'g', 'b', 'yellow'], dtype='<U6'), add_text='t ', text_points=[], fontsize_times=18, marker='o', delta_text=0.5, color_for_0=None, legend=[], fig=[], return_mappable=False, remove_back=True, edgecolors='none')
    Plot the multi-dimensional dynamics
    Inputs:
        dyn          = dynamics to plot. Should be a np.array with size k X T
        ax           = the subplot to plot in (optional)
        params_plot  = additional parameters for the plotting (optional). Can include plotting-related keys like xlabel, ylabel, title, etc.
        turn_off_back= disable backgroud of the plot? (optional). Boolean
        marker_size  = marker size of the plot (optional). Integer
        include_line = add a curve to the plot (in addition to the scatter plot). Boolean
        color_sig    = the color signal. if empty and color_by_dominant - color by the dominant dynamics. If empty and not color_by_dominant - color by time.
        cmap         = cmap
        colors       = if not empty -> pre-defined colors for the different sub-dynamics. Otherwise - colors are according to the cmap.
        color_mix    = relevant only if  color_by_dominant. In this case the colors need to be in the form of [r,g,b]
    Output:
        (only if return_fig) -> returns the figure

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

basic_functions-0.0.4.tar.gz (44.4 kB view details)

Uploaded Source

Built Distribution

basic_functions-0.0.4-py3-none-any.whl (30.1 kB view details)

Uploaded Python 3

File details

Details for the file basic_functions-0.0.4.tar.gz.

File metadata

  • Download URL: basic_functions-0.0.4.tar.gz
  • Upload date:
  • Size: 44.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for basic_functions-0.0.4.tar.gz
Algorithm Hash digest
SHA256 e465909200635674bf20e33ddd14381d366456ae6975ff94534d3f5035c4f3cc
MD5 8e4bd1ce51054821ff8f98f331b1430f
BLAKE2b-256 3605f01a45817d9683dfaae5de5f3c8b1f9b46802811fd2fb3a8fa52b6215b2a

See more details on using hashes here.

File details

Details for the file basic_functions-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for basic_functions-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 42d8ec565ec8364868ce0a8bedf399946fd204b0041dab7f13c8c61de6659a66
MD5 861d7634c9aa7f440c3ad5d8939954a4
BLAKE2b-256 995f88b80f49dfbf5da5dd6e859b99dd21b1fb804a24d9eb9d87ad4afc49c7e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page