Skip to main content
Python Software Foundation 20th Year Anniversary Fundraiser  Donate today!

image dataset eda tool to check basic information of images.

Project description


A simple eda tool to check basic information of images under a directory(images are found recursively). This tool was made to quickly check info and prevent mistakes on reading, resizing, and normalizing images as inputs for neural networks. It can be used when first joining an image competition or training CNNs with images!

- All images are converted to 3-channel(rgb) images. When images that have various channels are mixed, results can be misleading.
- uint8 and uint16 data types are supported. If different data types are mixed, error occurs.


pip install basic-image-eda


  • opencv-python
  • numpy
  • matplotlib
  • tqdm



simple one line command!

basic-image-eda <data_dir>


basic-image-eda <data_dir> --extensions png tiff --threads 12 --dimension_plot --channel_hist --nonzero --hw_division_factor 2.0

  -e --extensions          target image extensions.(default=['png', 'jpg', 'jpeg'])
  -t --threads             number of multiprocessing threads. if zero, automatically counted.(default=0)
  -d --dimension_plot      show dimension(height/width) scatter plot.(default=False)
  -c --channel_hist        show channelwise pixel value histogram. takes longer time.(default=False)
  -n --nonzero             calculate values only from non-zero pixels of the images.(default=False)
  -f --hw_division_factor  divide height,width of the images by this factor to make pixel value calculation faster.
                           Height, width information are not changed and will be printed correctly.(default=1.0)
  -V --version             show version.


from basic_image_eda import BasicImageEDA

if __name__ == "__main__":  # for multiprocessing
    data_dir = "./data"

    # below are default values. 
    extensions = ['png', 'jpg', 'jpeg']
    threads = 0
    dimension_plot = False
    channel_hist = False
    nonzero = False
    hw_division_factor = 1.0

    BasicImageEDA.explore(data_dir, extensions, threads, dimension_plot, channel_hist, nonzero, hw_division_factor)


Results on celeba dataset (test set)

found 19962 images.
Using 12 threads.

number of images          |  19962

dtype                     |  uint8
channels                  |  [3]
extensions                |  ['jpg']

min height                |  85
mean height               |  591.8215108706543
max height                |  5616

min width                 |  85
mean width                |  490.2976655645727
max width                 |  5616

mean height/width ratio   |  1.207065732587525
recommended input size    |  [592 488] (h x w, multiples of 8)
recommended input size    |  [592 496] (h x w, multiples of 16)
recommended input size    |  [576 480] (h x w, multiples of 32)

channel mean(0~1)         |  [0.49546506 0.42573904 0.39331011]
channel std(0~1)          |  [0.32161251 0.30237885 0.30192492]

Results on NIH Chest X-ray dataset (images_001.tar.gz)

found 4999 images.
Using 12 threads.

number of images          |  4999

dtype                     |  uint8
channels                  |  [1, 4]
extensions                |  ['png']

min height                |  1024
mean height               |  1024.0
max height                |  1024

min width                 |  1024
mean width                |  1024.0
max width                 |  1024

mean height/width ratio   |  1.0
recommended input size    |  [1024 1024] (h x w, multiples of 8)
recommended input size    |  [1024 1024] (h x w, multiples of 16)
recommended input size    |  [1024 1024] (h x w, multiples of 32)

channel mean(0~1)         |  [0.51725466 0.51725466 0.51725466]
channel std(0~1)          |  [0.25274113 0.25274113 0.25274113]


MIT License

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for basic-image-eda, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size basic_image_eda-0.0.2-py3-none-any.whl (8.9 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page