Detect and measure the Basic Influence Role each node holds within a Directed Network.
Project description
Basic Influence Roles (BIRs) ·
Detect and measure the basic role of influence each node plays within a directed network.
It supports a raw list of nodes, a NetworkX DiGraph, as well as a method to be used in a distributed context for Big Data use cases.
This algorithm returns:
- The Basic Influence Role (BIR) of a node in a network
- The BIR's level
- The influence measure related to the role
- A global influence measure based on indegree and outdegree
- The influence ranking of the node
For in-depth theoretical details and more examples, please read the main repository intro.
Index of contents
All useful informations can be found in the following paragraphs:
Installation
pip install basic-influence-roles
How to use it
Import BIRs package
import BIRs
Detect Basic Influence Roles
Methods to detect BIRs.
From a list of nodes
BIRs.detect_from_nodes(nodes=List[Dict])
Parameters
Field | Type | Required | Description |
---|---|---|---|
nodes |
[{...}] | yes | A list of all nodes' data as dict. |
nodes[i]['id'] |
any | yes | The name or id of the node. |
nodes[i]['indegree'] |
integer | yes | The number of incoming connections. |
nodes[i]['outdegree'] |
integer | yes | The number of outcoming connections. |
Example
# The list of nodes with indegree and outdegree
nodes = [
{'id': 1, 'indegree': 13, 'outdegree': 5},
{'id': 2, 'indegree': 3, 'outdegree': 8},
{'id': 3, 'indegree': 0, 'outdegree': 22},
{'id': 4, 'indegree': 16, 'outdegree': 19},
{...}
]
# Measure the influence score and detect the basic influence roles
res = BIRs.detect_from_nodes(nodes)
From a NetworkX graph
BIRs.detect_nx(nx.DiGraph)
Parameters
Type | Required | Description |
---|---|---|
nx.DiGraph | yes | A NetworkX directed graph. |
Example
# Create a random directed graph
G = nx.erdos_renyi_graph(100, 0.01, directed=True)
# Remove possible self-loop edges
G.remove_edges_from(nx.selfloop_edges(G))
# Detect basic influence roles of nodes
res = BIRs.detect_nx(G)
To use in a distributed context
In case of Big Data or Huge Networks you can distribute the load in this way:
BIRs.detect(indegree, outdegree, node_count)
Parameters
Field | Type | Required | Description |
---|---|---|---|
indegree |
integer | yes | The number of incoming connections. |
outdegree |
integer | yes | The number of outcoming connections. |
node_count |
integer | yes | The total number of nodes. |
data |
boolean | no | If True returns indegree and outdegree. |
Example
# Get the total count of nodes
node_count = 8586987087
# For every node in a huge network (use here a distributed loop instead)
for indegree, outdegree in nodes:
# Get basic influence role of every node in network
res = BIRs.detect(indegree, outdegree, node_count, True)
Output
The output is a list of nodes reporting their id, role, role level, influence measure, influence ranking.
Field | Type | Description |
---|---|---|
id |
any | The id of node. |
role |
string | The basic influence role. |
role_influence |
float | The influence magnitude related to the node's role. |
role_level |
string | The level of role, a role subcategory. |
influence |
float | A normalized influence score based on indegree and outdegree. |
indegree |
integer | The number of incoming connections. |
outdegree |
integer | The number of outcoming connections. |
normalized_indegree |
float | The normalized number of incoming connections. |
normalized_outdegree |
float | The normalized number of outcoming connections. |
rank |
integer | The normalized influence ranking based on the value of influence field. |
Example
[
{
'id': 4,
'role': 'hub',
'role_influence': 0.9210526315789473,
'role_level': 'strong',
'influence': 0.9210526315789473,
'indegree': 16,
'outdegree': 19,
'normalized_indegree': 0.8421052631578947,
'normalized_outdegree': 1.0,
'rank': 1
},
{
'id': 3,
'role': 'emitter',
'role_influence': 0.9473684210526315,
'role_level': 'strong',
'influence': 0.47368421052631576,
'indegree': 0,
'outdegree': 18,
'normalized_indegree': 0.0,
'normalized_outdegree': 0.9473684210526315
'rank': 2
},
...
]
Get the distribution of Basic Influence Roles
Given a list of BIRs, can be calculated the distribution of BIRs in a network, as a normalized frequency between roles and also between their levels.
BIRs.distribution(data=[])
Parameters
Field | Type | Required | Description |
---|---|---|---|
data |
[{...}] | yes | The list of roles, the output of BIRs' detection methods. |
Example
# Create a random directed graph
G = nx.erdos_renyi_graph(100, 0.01, directed=True)
# Remove possible self-loop edges
G.remove_edges_from(nx.selfloop_edges(G))
# Detect basic influence roles of nodes
data = BIRs.detect_nx(G)
# Detect the distribution of BIRs
res = BIRs.distribution(data)
Output
{
'reducer': {
'count': 12,
'frequency': 0.12,
'levels': {
'none': {'count': 0, 'frequency': 0.0},
'branch': {'count': 0, 'frequency': 0.0},
'weak': {'count': 7, 'frequency': 0.07},
'strong': {'count': 5, 'frequency': 0.05},
'top': {'count': 0, 'frequency': 0.0}
}
},
'amplifier': {
'count': 13,
'frequency': 0.13,
'levels': {
'none': {'count': 0, 'frequency': 0.0},
'branch': {'count': 0, 'frequency': 0.0},
'weak': {'count': 12, 'frequency': 0.12},
'strong': {'count': 1, 'frequency': 0.01},
'top': {'count': 0, 'frequency': 0.0}
}
},
'emitter': {
'count': 28,
'frequency': 0.28,
'levels': {
'none': {'count': 0, 'frequency': 0.0},
'branch': {'count': 18, 'frequency': 0.18},
'weak': {'count': 10, 'frequency': 0.1},
'strong': {'count': 0, 'frequency': 0.0},
'top': {'count': 0, 'frequency': 0.0}
}
},
...
}
Tests
The package is battle tested with a coverage of 98%. Unit tests are inside the folder /test
.
At first, install dev requirements:
pip install -r requirements-dev.txt
To run all unit tests with coverage, type:
PYTHONPATH=src python -m coverage run --source=src -m unittest discover test -v
Or run the bash script:
./test.sh
To run the coverage report:
coverage report -m
Citing
If you use this software in your work, please cite it as below:
Miceli, D. (2024). Basic Influence Roles (BIRs) [Computer software]. https://github.com/davidemiceli/basic-influence-roles
Or the BibTeX version:
@software{MiceliBasicInfluenceRoles2024,
author = {Miceli, Davide},
license = {MIT},
month = mar,
title = {{Basic Influence Roles (BIRs)}},
url = {https://github.com/davidemiceli/basic-influence-roles},
year = {2024}
}
License
Basic Influence Roles is an open source project available under the MIT license.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file basic-influence-roles-1.0.5.tar.gz
.
File metadata
- Download URL: basic-influence-roles-1.0.5.tar.gz
- Upload date:
- Size: 7.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd68f36485d3f53da4c010c9f89d705ccdec2761eddfc8dd7431dbe8f039b386 |
|
MD5 | c4be308d12ce3303f289a637debe2d98 |
|
BLAKE2b-256 | df20edd8af5b5204189d04072c197b03a64c11a1c9805b8db06f3f6437724170 |
File details
Details for the file basic_influence_roles-1.0.5-py3-none-any.whl
.
File metadata
- Download URL: basic_influence_roles-1.0.5-py3-none-any.whl
- Upload date:
- Size: 5.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 445c0847f73f89a29cb4e7347c70890943871ddf324e235e5aa633b917d1289c |
|
MD5 | ba58733265ba99a7ff05d51a5fe4b2aa |
|
BLAKE2b-256 | ef80cee190fedc46820fed6f1dd905d5752ca48326c59e2328bf3239b8a7969a |