Skip to main content

Detect and measure the Basic Influence Role each node holds within a Directed Network.

Project description

Basic Influence Roles (BIRs) · GitHub license PRs Welcome

Detect and measure the basic role of influence each node plays within a directed network.

It supports a raw list of nodes, a NetworkX DiGraph, as well as a method to be used in a distributed context for Big Data use cases.

This algorithm returns:

  • The Basic Influence Role (BIR) of a node in a network
  • The BIR's level
  • The influence measure related to the role
  • A global influence measure based on indegree and outdegree
  • The influence ranking of the node

For in-depth theoretical details and more examples, please read the main repository intro.

Index of contents

All useful informations can be found in the following paragraphs:

Installation

pip install basic-influence-roles

How to use it

Import BIRs package

import BIRs

Detect Basic Influence Roles

Methods to detect BIRs.

From a list of nodes

BIRs.detect_from_nodes(nodes=List[Dict])

Parameters

Field Type Required Description
nodes [{...}] yes A list of all nodes' data as dict.
nodes[i]['id'] any yes The name or id of the node.
nodes[i]['indegree'] integer yes The number of incoming connections.
nodes[i]['outdegree'] integer yes The number of outcoming connections.
Example
# The list of nodes with indegree and outdegree
nodes = [
  {'id': 1, 'indegree': 13, 'outdegree': 5},
  {'id': 2, 'indegree': 3, 'outdegree': 8},
  {'id': 3, 'indegree': 0, 'outdegree': 22},
  {'id': 4, 'indegree': 16, 'outdegree': 19},
  {...}
]
# Measure the influence score and detect the basic influence roles
res = BIRs.detect_from_nodes(nodes)

From a NetworkX graph

BIRs.detect_nx(nx.DiGraph)

Parameters

Type Required Description
nx.DiGraph yes A NetworkX directed graph.
Example
# Create a random directed graph
G = nx.erdos_renyi_graph(100, 0.01, directed=True)
# Remove possible self-loop edges
G.remove_edges_from(nx.selfloop_edges(G))
# Detect basic influence roles of nodes
res = BIRs.detect_nx(G)

To use in a distributed context

In case of Big Data or Huge Networks you can distribute the load in this way:

BIRs.detect(indegree, outdegree, node_count)

Parameters

Field Type Required Description
indegree integer yes The number of incoming connections.
outdegree integer yes The number of outcoming connections.
node_count integer yes The total number of nodes.
data boolean no If True returns indegree and outdegree.
Example
# Get the total count of nodes
node_count = 8586987087
# For every node in a huge network (use here a distributed loop instead)
for indegree, outdegree in nodes:
    # Get basic influence role of every node in network
    res = BIRs.detect(indegree, outdegree, node_count, True)

Output

The output is a list of nodes reporting their id, role, role level, influence measure, influence ranking.

Field Type Description
id any The id of node.
role string The basic influence role.
role_influence float The influence magnitude related to the node's role.
role_level string The level of role, a role subcategory.
influence float A normalized influence score based on indegree and outdegree.
indegree integer The number of incoming connections.
outdegree integer The number of outcoming connections.
normalized_indegree float The normalized number of incoming connections.
normalized_outdegree float The normalized number of outcoming connections.
rank integer The normalized influence ranking based on the value of influence field.
Example
[
    {
        'id': 4,
        'role': 'hub',
        'role_influence': 0.9210526315789473,
        'role_level': 'strong',
        'influence': 0.9210526315789473,
        'indegree': 16,
        'outdegree': 19,
        'normalized_indegree': 0.8421052631578947,
        'normalized_outdegree': 1.0,
        'rank': 1
    },
    {
        'id': 3,
        'role': 'emitter',
        'role_influence': 0.9473684210526315,
        'role_level': 'strong',
        'influence': 0.47368421052631576,
        'indegree': 0,
        'outdegree': 18,
        'normalized_indegree': 0.0,
        'normalized_outdegree': 0.9473684210526315
        'rank': 2
    },
    ...
]

Get the distribution of Basic Influence Roles

Given a list of BIRs, can be calculated the distribution of BIRs in a network, as a normalized frequency between roles and also between their levels.

BIRs.distribution(data=[])

Parameters

Field Type Required Description
data [{...}] yes The list of roles, the output of BIRs' detection methods.
Example
# Create a random directed graph
G = nx.erdos_renyi_graph(100, 0.01, directed=True)
# Remove possible self-loop edges
G.remove_edges_from(nx.selfloop_edges(G))
# Detect basic influence roles of nodes
data = BIRs.detect_nx(G)
# Detect the distribution of BIRs
res = BIRs.distribution(data)

Output

{
    'reducer': {
        'count': 12,
        'frequency': 0.12,
        'levels': {
            'none': {'count': 0, 'frequency': 0.0},
            'branch': {'count': 0, 'frequency': 0.0},
            'weak': {'count': 7, 'frequency': 0.07},
            'strong': {'count': 5, 'frequency': 0.05},
            'top': {'count': 0, 'frequency': 0.0}
        }
    },
    'amplifier': {
        'count': 13,
        'frequency': 0.13,
        'levels': {
            'none': {'count': 0, 'frequency': 0.0},
            'branch': {'count': 0, 'frequency': 0.0},
            'weak': {'count': 12, 'frequency': 0.12},
            'strong': {'count': 1, 'frequency': 0.01},
            'top': {'count': 0, 'frequency': 0.0}
        }
    },
    'emitter': {
        'count': 28,
        'frequency': 0.28,
        'levels': {
            'none': {'count': 0, 'frequency': 0.0},
            'branch': {'count': 18, 'frequency': 0.18},
            'weak': {'count': 10, 'frequency': 0.1},
            'strong': {'count': 0, 'frequency': 0.0},
            'top': {'count': 0, 'frequency': 0.0}
        }
    },
    ...
}

Tests

The package is battle tested with a coverage of 98%. Unit tests are inside the folder /test.

At first, install dev requirements:

pip install -r requirements-dev.txt

To run all unit tests with coverage, type:

PYTHONPATH=src python -m coverage run --source=src -m unittest discover test -v

Or run the bash script:

./test.sh

To run the coverage report:

coverage report -m

Citing

If you use this software in your work, please cite it as below:

Miceli, D. (2024). Basic Influence Roles (BIRs) [Computer software]. https://github.com/davidemiceli/basic-influence-roles

Or the BibTeX version:

@software{MiceliBasicInfluenceRoles2024,
  author = {Miceli, Davide},
  license = {MIT},
  month = mar,
  title = {{Basic Influence Roles (BIRs)}},
  url = {https://github.com/davidemiceli/basic-influence-roles},
  year = {2024}
}

License

Basic Influence Roles is an open source project available under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

basic-influence-roles-1.0.5.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

basic_influence_roles-1.0.5-py3-none-any.whl (5.9 kB view details)

Uploaded Python 3

File details

Details for the file basic-influence-roles-1.0.5.tar.gz.

File metadata

  • Download URL: basic-influence-roles-1.0.5.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.0

File hashes

Hashes for basic-influence-roles-1.0.5.tar.gz
Algorithm Hash digest
SHA256 fd68f36485d3f53da4c010c9f89d705ccdec2761eddfc8dd7431dbe8f039b386
MD5 c4be308d12ce3303f289a637debe2d98
BLAKE2b-256 df20edd8af5b5204189d04072c197b03a64c11a1c9805b8db06f3f6437724170

See more details on using hashes here.

File details

Details for the file basic_influence_roles-1.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for basic_influence_roles-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 445c0847f73f89a29cb4e7347c70890943871ddf324e235e5aa633b917d1289c
MD5 ba58733265ba99a7ff05d51a5fe4b2aa
BLAKE2b-256 ef80cee190fedc46820fed6f1dd905d5752ca48326c59e2328bf3239b8a7969a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page