Batching is a set of tools to format data for training sequence models
Project description
Batching
Batching is a set of tools to format data for training sequence models.
Installation
$ pip install batching
Example usage
Example script exists in sample.py
# Metadata for batch info - including batch IDs and mappings to storage resouces like filenames
storage_meta = StorageMeta(validation_split=0.2)
# Storage for batch data - Memory, Files, S3
storage = BatchStorageMemory(storage_meta)
# Create batches - configuration contains feature names, windowing config, timeseries spacing
batch_generator = Builder(storage,
feature_set,
look_back,
look_forward,
batch_seconds,
batch_size=128)
batch_generator.generate_and_save_batches(list_of_dataframes)
# Generator for feeding batches to training - tf.keras.model.fit_generator
train_generator = BatchGenerator(storage)
validation_generator = BatchGenerator(storage, is_validation=True)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, activation='sigmoid')
model.compile(loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit_generator(train_generator,
validation_data=validation_generator,
epochs=epochs)
License
- MIT license
- Copyright 2015 © FVCproductions.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
batching-1.0.0.tar.gz
(7.4 kB
view details)
File details
Details for the file batching-1.0.0.tar.gz.
File metadata
- Download URL: batching-1.0.0.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a1790030de888e1fb2893304f37509946464044150e37b2c8255029e6aa1b195
|
|
| MD5 |
bf51667779c9885286a689cf6b86dc27
|
|
| BLAKE2b-256 |
5be946677ab157d017643a54daf594e4197f0e2d90d9ca4444a31bd5efdd5cc9
|