Skip to main content

'batorch' is an extension of package torch, for tensors with batch dimensions.

Project description

batorch

Introduction

batorch is a package affiliated to project PyCAMIA. We encapsulated a new type on top of torch tensers, which we call it batorch.Tensor. It has the same function as torch.Tensor, but it can automatically select the device it was on and provide batch or channel dimensions. Also, we try to provide more useful module for torch users to make deep learning to be implemented more easily. It relies python v3.6+ with torch v 1.7.0+. Note that torch v1.7.0 was released in 2020, and it is necessary for this package as the inheritance behavior for this version is different from previous versions. Most original torch functions should be able to be applied for batorch tensors.

Special features for batorch are still under development. If unknown errors pop our, please use traditional torch code to bypass it and meanwhile it would be very kind of you to let us know if anything is needed: please contact us by e-mail.

>>> import batorch as bt
>>> import batorch.nn as nn
>>> bt.turn_off_autodevice()
>>> bt.manual_seed(0)
<torch._C.Generator object at 0x1071b6730>
>>> t = bt.randn([3000], 400, requires_grad=True)
>>> LP = nn.Linear(400, 400)
>>> a = LP(t)
>>> a.sum().sum().backward()
>>> print(t.grad)
Tensor([[-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702],
        [-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702],
        [-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702],
        ...,
        [-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702],
        [-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702],
        [-0.2986,  0.0267,  0.9059,  ...,  0.4563, -0.1291,  0.5702]], shape=batorch.Size([3000], 400))

batorch has all of following appealing features:

  1. Auto assign the tensors to available GPU device by default.
  2. Use [nbatch] or {nchannel} to specify the batch and channel dimensions. i.e. tp.rand([4], {2}, 20, 30) returns a 2-channel feature tensor of $20\times30$ matrices with batch size 4. One may also use tensor.batch_dimension to access (or assign) batch dimension, channel dimension can be operated likewise. If you find it hard to remember the symbol, just remember brackets enclose paralleled items in matrices hence it represents the batch dimension for paralleled calculation; braces enclose equation systems which are highly related hence it represents the channel (or feature) dimension.
  3. Batch and channel dimension can help auto matching the sizes of two tensors in operations. For example, tensors of sizes (3, [2], 4) and (3, 4) can be automatically added together with axis of size 3 and 4 matched together. Some methods will also use this information. Sampling, for example, will take the batch dimension as priority.
  4. The tensor object is compatible with original torch functions.

Installation

This package can be installed by pip install batorch or moving the source code to the directory of python libraries (the source code can be downloaded on github or PyPI).

pip install batorch

Usages

Not available yet, one may check the codes for usages.

Acknowledgment

@ Yuncheng Zhou: Developer @ Yiteng Zhang: Important functions extraction

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

batorch-1.0.48.tar.gz (286.1 kB view details)

Uploaded Source

Built Distribution

batorch-1.0.48-py3-none-any.whl (313.6 kB view details)

Uploaded Python 3

File details

Details for the file batorch-1.0.48.tar.gz.

File metadata

  • Download URL: batorch-1.0.48.tar.gz
  • Upload date:
  • Size: 286.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.1

File hashes

Hashes for batorch-1.0.48.tar.gz
Algorithm Hash digest
SHA256 8cbe2b9506ac4c36ccd4efc877e82ce34370586c9acdff184743004dea9fb465
MD5 40e6d415badf6dcb809abac54b89326c
BLAKE2b-256 ba53c322265f62a725f4c3d73e4e31718d4df93b95f8f9ee99ef123c0032bb8e

See more details on using hashes here.

File details

Details for the file batorch-1.0.48-py3-none-any.whl.

File metadata

  • Download URL: batorch-1.0.48-py3-none-any.whl
  • Upload date:
  • Size: 313.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.1

File hashes

Hashes for batorch-1.0.48-py3-none-any.whl
Algorithm Hash digest
SHA256 622a62c3d08b52f865beb917ebe6c39d47d12770d0ae1990d65430f9e5782b2e
MD5 cea8ab44f5ad5c285e44da1ad4274edf
BLAKE2b-256 a08b3cea52ee7fef9ad92f11d1e25989ccab9da5ca4cf05a83894b5b8f84f123

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page