BAT to Python
Project description
BAT to Python (batty)
A small python interface to the Bayesian Analysis Toolkit (BAT.jl) https://github.com/bat/BAT.jl
Quick Start
Installation
There are two parts to an installation, one concerning the python side, and one the julia side:
-
Python:
pip install batty
-
Julia:
import Pkg; Pkg.add.(["PyJulia", "DensityInterface", "Distributions", "ValueShapes", "TypedTables", "ArraysOfArrays", "BAT"])
Minimal Example
The code below is showing a minimal example:
- using a gaussian likelihood and a uniform prior
- generating samples via Metropolis-Hastings
- plotting the resulting sampes
- estimating the integral value via BridgeSampling
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from batty import BAT_sampler, BAT, Distributions
/mnt/c/Users/peller/work/batty/batty.py:6: UserWarning: Not able to use compiled modules, resulting in (very) slow import
See https://pyjulia.readthedocs.io/en/latest/troubleshooting.html
warnings.warn("Not able to use compiled modules, resulting in (very) slow import\n See https://pyjulia.readthedocs.io/en/latest/troubleshooting.html")
sampler = BAT_sampler(llh=lambda x : -0.5 * x**2, prior_specs=Distributions.Uniform(-3, 3))
sampler.sample();
sampler.corner();
sampler.integrate()
0.4165591088238079+/-0.00020607405882794568
Usage
Using Different Algotihms
There are a range of algorihtms available within BAT, and those can be further customized via arguments. Here are just a few examples:
Integration:
- AHMI:
sampler.integrate(strategy=BAT.AHMIntegration())
0.41993468380372745+/-0.0015153686310618321
- Bridge Sampling:
sampler.integrate(strategy=BAT.BridgeSampling())
0.4166724726365416+/-0.0002060289597245534
MCMC Sampling:
results = {}
- Metropolis-Hastings:
results['Metropolis-Hastings'] = sampler.sample(strategy=BAT.MCMCSampling(nsteps=10_000, nchains=2))
- Metropolis-Hastings with Accept-Reject weighting:
results['Accept-Reject Weighting'] = sampler.sample(strategy=BAT.MCMCSampling(mcalg=BAT.MetropolisHastings(weighting=BAT.ARPWeighting()), nsteps=10_000, nchains=2))
- Prior Importance Sampling:
results['Prior Importance Sampling'] = sampler.sample(strategy=BAT.PriorImportanceSampler(nsamples=10_000))
- Sobol Sampler:
results['Sobol Quasi Random Numbers'] = sampler.sample(strategy=BAT.SobolSampler(nsamples=10_000))
- Grid Sampler:
results['Grid Points'] = sampler.sample(strategy=BAT.GridSampler(ppa=1000))
Plotting the different results:
fig = plt.figure(figsize=(9,6))
bins=np.linspace(-3, 3, 100)
for key, item in results.items():
plt.hist(item.v, weights=item.weight, bins=bins, density=True, histtype="step", label=key);
plt.legend()
<matplotlib.legend.Legend at 0x7f05724e28e0>
Specifying Priors and Likelihoods
Priors are specified via Julia Distributions
, multiple Dimensions can be defined via a dict
, where the key
is the dimension name and the value the distribution
s = np.array([[0.25, 0.4], [0.9, 0.75]])
prior_specs = {'a' : Distributions.Uniform(-3,3), 'b' : Distributions.MvNormal([1,1], s@s.T)}
The log-likelihood (llh
) can be any python callable, that returns the log-likelihood values. The first argument to the function is the object with paramneter values, here x
. If the prior is simple (i.e. like in the example in the beginning, x
is directly the parameter value). If the prior is specified via a dict
, then x
contains a field per parameter with the value.
Any additional args
to the llh can be given in the sampler, such as here d
for data:
def llh(x, d):
return -0.5 * ((x.b[0] - d[0])**2 + (x.b[1] - d[1])**2/4) - x.a
d = [-1, 1]
sampler = BAT_sampler(llh, prior_specs, llh_args=(d,), progress_bar=True)
Let us generate a few samples:
sampler.sample(strategy=BAT.MCMCSampling(nsteps=10_000, nchains=2));
llh at -11.0996: : 35132it [01:46, 377.76it/s]
Some interface to plotting tools are available
- The Great Triangular Confusion (GTC) plot:
sampler.gtc(figureSize=8, customLabelFont={'size':14}, customTickFont={'size':10});
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
- The corner plot:
sampler.corner(color='green');
# does not work
#sampler.sample(strategy=BAT.MCMCSampling(nsteps=1000, nchains=2, mcalg=BAT.HamiltonianMC()));
#takes way too long, something wrong
#sampler.sample(strategy=BAT.PartitionedSampling(npartitions=2, sampler=BAT.MCMCSampling(nchains=2, nsteps=100, strict=False), exploration_sampler=BAT.MCMCSampling(nchains=2, nsteps=100, strict=False)))
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file batty-0.0.7.tar.gz
.
File metadata
- Download URL: batty-0.0.7.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f5525a555660d14308bde463bed2572bcd274f61875bf83a3893449fd68c09c |
|
MD5 | fe3cc6b0c450bfa181e6576b83380061 |
|
BLAKE2b-256 | caa84438661ce9c459e035ba76e0a439cf6170df8c9976ff848f270d301fcac8 |