This package provides some extra functionality for plotting baycomp's posteriors.
Project description
Baycomp Plotting
The baycomp_plotting is a python package for building good-looking plots of bayesian posteriors obtained with baycomp.
This package could be useful for scientific purposes, specially in the area of Machine Learning.
Author
- Mario Juez-Gil <mariojg@ubu.es>
Department of Computer Science
Universidad de Burgos
ADMIRABLE Research Group
Installation
This package can be installed using PIP.
pip install baycomp_plotting
Basic Usage
The package can be imported as follows:
import baycomp_plotting as bplt
Two plotting functions (tern
, and dens
), and one class with four matplotlib alternative colors (Color
) are provided.
Colors
Four alternative colors to default matplotlib colors are provided:
Example:
import baycomp_plotting as bplt
print(bplt.Color.BLUE)
Output:
'#008ece'
Density plots
For plotting the comparison of two classifiers on a single dataset, dens
function could be used. It's parameters are the following:
p
: baycomp posterior.label
: label of the density function.ls
: line style (use a matplotlib line style) [default:-
]color
: density function color [default:Color.BLUE
]
Example:
import baycomp_plotting as bplt
import baycomp as bc
posterior = bc.CorrelatedTTest(left_classifier_acc, right_classifier_acc, rope=0.01)
fig = bplt.dens(posterior, label='C1', ls='-', color=bplt.Color.BLUE)
Output:
The output figure will have a new function named add_posterior
so you can add more posteriors to the figure. The parameters are the same as for dens
.
Example:
import baycomp_plotting as bplt
import baycomp as bc
posterior = bc.CorrelatedTTest(left_classifier_1_acc, right_classifier_acc, rope=0.01)
posterior_1 = bc.CorrelatedTTest(left_classifier_2_acc, right_classifier_acc, rope=0.01)
fig = bplt.dens(posterior, label='C1', ls='-', color=bplt.Color.BLUE)
fig.add_posterior(posterior_1, label='C2', ls=(0,(5,1)), color=bplt.Color.GRAY)
fig.legend() # you can show the legend
Output:
Ternary plots
For plotting the comparison of two classifiers on multiple datasets using a ternary plot, tern
function could be used. It's parameters are the following:
p
: baycomp posterior.names
: an array containing Left and Right region labels. [default:["L", "R"]
]
Example:
import baycomp_plotting as bplt
import baycomp as bc
posterior = bc.HierarchicalTest(left_classifier_acc, right_classifier_acc, rope=0.01)
fig = bplt.tern(posterior)
Output:
Comparison against baycomp default plots
Density:
Ternary:
Contribute
Feel free to submit any pull requests 😊
Acknowlegments
This work was supported by the pre-doctoral grant (EDU/1100/2017) of the Consejería de Educación of the Junta de Castilla y León, Spain, and the European Social Fund.
License
This work is licensed under GNU GPL v3.
Citation policy
Please, cite this work as:
@software{baycomp_plotting,
author = {Mario Juez-Gil},
title = {{mjuez/baycomp_plotting}},
month = nov,
year = 2020,
publisher = {Zenodo},
version = {v1.0},
doi = {10.5281/zenodo.4244542},
url = {https://doi.org/10.5281/zenodo.4244542}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file baycomp_plotting-1.1.1.tar.gz
.
File metadata
- Download URL: baycomp_plotting-1.1.1.tar.gz
- Upload date:
- Size: 5.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c32ec751ba3deefc9cd147035f15d85dd90115202e3d1db59b2a99710218189 |
|
MD5 | 48ccccd4d194fd2ee62fb8c17139ae55 |
|
BLAKE2b-256 | 72bfba276c1943d8b1a1074b5c674a1416398e6f53dbf5c5781eeb5dc86d7b41 |