Skip to main content

This package provides some extra functionality for plotting baycomp's posteriors.

Project description

Baycomp Plotting

The baycomp_plotting is a python package for building good-looking plots of bayesian posteriors obtained with baycomp.

This package could be useful for scientific purposes, specially in the area of Machine Learning.

Author

Installation

This package can be installed using PIP.

pip install baycomp_plotting

Basic Usage

The package can be imported as follows:

import baycomp_plotting as bplt

Two plotting functions (tern, and dens), and one class with four matplotlib alternative colors (Color) are provided.

Colors

Four alternative colors to default matplotlib colors are provided:

Example:

import baycomp_plotting as bplt

print(bplt.Color.BLUE)

Output:

'#008ece'

Density plots

For plotting the comparison of two classifiers on a single dataset, dens function could be used. It's parameters are the following:

  • p: baycomp posterior.
  • label: label of the density function.
  • ls: line style (use a matplotlib line style) [default: -]
  • color: density function color [default: Color.BLUE]

Example:

import baycomp_plotting as bplt
import baycomp as bc

posterior = bc.CorrelatedTTest(left_classifier_acc, right_classifier_acc, rope=0.01)
fig = bplt.dens(posterior, label='C1', ls='-', color=bplt.Color.BLUE)

Output:

The output figure will have a new function named add_posterior so you can add more posteriors to the figure. The parameters are the same as for dens.

Example:

import baycomp_plotting as bplt
import baycomp as bc

posterior = bc.CorrelatedTTest(left_classifier_1_acc, right_classifier_acc, rope=0.01)
posterior_1 = bc.CorrelatedTTest(left_classifier_2_acc, right_classifier_acc, rope=0.01)
fig = bplt.dens(posterior, label='C1', ls='-', color=bplt.Color.BLUE)
fig.add_posterior(posterior_1, label='C2', ls=(0,(5,1)), color=bplt.Color.GRAY)
fig.legend() # you can show the legend

Output:

Ternary plots

For plotting the comparison of two classifiers on multiple datasets using a ternary plot, tern function could be used. It's parameters are the following:

  • p: baycomp posterior.
  • names: an array containing Left and Right region labels. [default: ["L", "R"]]

Example:

import baycomp_plotting as bplt
import baycomp as bc

posterior = bc.HierarchicalTest(left_classifier_acc, right_classifier_acc, rope=0.01)
fig = bplt.tern(posterior)

Output:

Comparison against baycomp default plots

Density:

Ternary:

Contribute

Feel free to submit any pull requests 😊

Acknowlegments

This work was supported by the pre-doctoral grant (EDU/1100/2017) of the Consejería de Educación of the Junta de Castilla y León, Spain, and the European Social Fund.

License

This work is licensed under GNU GPL v3.

Citation policy

Please, cite this work as:

@software{baycomp_plotting,
  author       = {Mario Juez-Gil},
  title        = {{mjuez/baycomp_plotting}},
  month        = nov,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {v1.0},
  doi          = {10.5281/zenodo.4244542},
  url          = {https://doi.org/10.5281/zenodo.4244542}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baycomp_plotting-1.1.1.tar.gz (5.2 kB view details)

Uploaded Source

File details

Details for the file baycomp_plotting-1.1.1.tar.gz.

File metadata

  • Download URL: baycomp_plotting-1.1.1.tar.gz
  • Upload date:
  • Size: 5.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for baycomp_plotting-1.1.1.tar.gz
Algorithm Hash digest
SHA256 8c32ec751ba3deefc9cd147035f15d85dd90115202e3d1db59b2a99710218189
MD5 48ccccd4d194fd2ee62fb8c17139ae55
BLAKE2b-256 72bfba276c1943d8b1a1074b5c674a1416398e6f53dbf5c5781eeb5dc86d7b41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page