Skip to main content

An implementation of bayesian cut methods

Project description

Pypi Version License Build Status

The Bayesian Cut Python package provides an easy to use API for the straight-forward application of Bayesian network cuts using a full Bayesian inference framework based on the Gibbs-Sampler using the degree corrected Stochastic Blockmodel (dc-SBM) or the Bayesian Cut (BC). Furthermore it provides modularity, ratio-cut and norm cut based spectral network cut methods. It also provides a rich visualization library that allow an easy analysis of posterior solution landscapes and network cuts obtained by the various methods.

Jupyter Notebooks with examples on how to use the package can be found at https://github.com/DTUComputeCognitiveSystems/bayesian_cut/tree/master/examples

Installation

  • Install the package for Python3 using the following command. Some dependencies might require an upgrade (scikit-learn, numpy and scipy).
    $ pip install bayesian_cut
  • Now you can import the bayesian cut class by typing
    from bayesian_cut.cuts import Model

Quick Start

Use the bayesian_cut package for performing graph cuts

# Load the package
from bayesian_cut.data.load import load_data
from bayesian_cut.cuts.bayesian_models import Model

# Load an example network
network_name = 'karate'
X, Y = load_data(network=network_name, labels=True, remove_disconnected=True)

# Set the parameters for the model
n_samples_per_chain = 75
n_chains = 15
C = 2
model_params = {
    'alpha_in': 1e-2,
    'beta_in': 1e-2,
    'alpha_out': 1e-2,
    'beta_out': 1e-2,
    'b': 1,
    'gamma': 3
}

# Define the model
BC = Model('ShiftedApproximateBayesianCommunityDetection',
            X,
            model_params,
            Y=Y,
            C=C,
            block_sampling=False,
            marginalize_phi=True
            )

# Add the number of chains to run
BC.add_chains(number_of_chains=n_chains)

# Run the Gibbs sampler
BC.run_chains(n_samples=n_samples_per_chain,
              n_prior_updates=20,
              verbose=2,
              save_all_samples=False,
              parallel=True
              )

# Obtain the cut with the highest log-likelihood
graph_cut_z_vector = BC.get_best_chain().max_log_lik_z_

# Plot the cut as an adjacency matrix
from bayesian_cut.utils import utils
utils.cluster_plot(BC)

# Done

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayesian_cut-0.1.2b0.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

bayesian_cut-0.1.2b0-py3-none-any.whl (29.5 kB view details)

Uploaded Python 3

File details

Details for the file bayesian_cut-0.1.2b0.tar.gz.

File metadata

  • Download URL: bayesian_cut-0.1.2b0.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for bayesian_cut-0.1.2b0.tar.gz
Algorithm Hash digest
SHA256 45eebf057ade356b71bcb401aff9a4ce8f8f8a73b7c16f471489146040bce5e2
MD5 d1bc3977190f8530993072ebd4666eab
BLAKE2b-256 8df8c8782d08f573699b184dd8f581ed4eb593e1d6290c67a8deace245ebc273

See more details on using hashes here.

File details

Details for the file bayesian_cut-0.1.2b0-py3-none-any.whl.

File metadata

  • Download URL: bayesian_cut-0.1.2b0-py3-none-any.whl
  • Upload date:
  • Size: 29.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.6.8

File hashes

Hashes for bayesian_cut-0.1.2b0-py3-none-any.whl
Algorithm Hash digest
SHA256 5fa5c7616a411bdb89b09ddebdf487c754f96be40a04534b5ab6baf5ddc68379
MD5 604b841094814b4d13151bf0daee829a
BLAKE2b-256 8e968f429a2111ae2e097d6e0b7c998185d5074f1010e348d9da181de7270b30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page