Una libreria para construir redes bayesianas y realizar inferencia probabilística
Project description
Redes Bayesianas
Una librería para construir redes bayesianas y realizar inferencia probabilística.
Instalación
Con el manejador de paquetes pip:
- pip install bayesian-networks-rey20074
Uso
from src.bayesian_networks_rey20074.BayesianNetwork import BayesianNetwork, Node
node_b = Node("b", 0.001)
node_e = Node("e", 0.002)
node_a = Node("a", multiple_parents=True)
node_a.add_connection_multiple_parents({"b": True, "e": True}, 0.95)
node_a.add_connection_multiple_parents({"b": True, "e": False}, 0.94)
node_a.add_connection_multiple_parents({"b": False, "e": True}, 0.29)
node_a.add_connection_multiple_parents({"b": False, "e": False}, 0.001)
node_a.add_connection("j", 0.9, True)
node_a.add_connection("j", 0.05, False)
node_a.add_connection("m", 0.7, True)
node_a.add_connection("m", 0.01, False)
node_j = Node("j")
node_m = Node("m")
network = BayesianNetwork()
network.add_node(node_a)
network.add_node(node_b)
network.add_node(node_e)
network.add_node(node_j)
network.add_node(node_m)
print('## GET PROBABILISTIC INFERENCE')
print(network.probabilistic_inference("m"))
print('\n## GET COMPACT REPRESENTATION')
representation = network.get_compact_representation()
print(representation)
print('## GET ELEMENTS USED FOR ALGORITHM')
collections = network.get_all_representations()
for x in collections:
print(x)
print('\n## GET IS FULLY DESCRIBED')
desc = network.is_fully_described()
if (desc == True):
print("Red Bayesiana Descriptiva")
else:
print("Red Bayesiana No Descriptiva")
API
Se incluyen las siguientes clases
Clase Node
- init(self, title: str, probability_of_success: float = None, multiple_parents: bool = False)
- add_connection(self, next_node_title: str, probability_of_success: float, parent_was_succesful: bool)
- get_children(self)
- get_children_title(self)
- delete_connection(self, node_title: str)
- delete_connection(self, node_title: str, parent_was_succesful: bool)
- add_connection_multiple_parents(self, parent_nodes: dict, probability_of_success: float)
- edit_connection(self, node_title: str, probability_of_success: float)
Clase BayesianNetwork
- init(self)
- get_nodes(self)
- get_node(self, node_title: str)
- delete_node(self, node_title: str)
- add_node(self, node: Node)
- replace_node(self, node_title: str, new_node: Node)
- get_parent(self, child_node_title: str)
- get_parents(self, child_node_title: str)
- one_parent_probabilistic_inference(self, node_title: str
- multiply_list(myList: list)
- multiple_parents_probabilistic_inference(self, node_title: str)
- probabilistic_inference(self, node_title: str)
- get_compact_representation(network)
- is_fully_described(self)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file bayesian_networks_rey20074-0.1.5.tar.gz
.
File metadata
- Download URL: bayesian_networks_rey20074-0.1.5.tar.gz
- Upload date:
- Size: 5.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37800181cf4b259678c17e16c80e9f0df93293cb769acdee07e89275be0dc40b |
|
MD5 | a8b86ceb394c2dbac7b3448a38cf2b2e |
|
BLAKE2b-256 | 756ba586c9dc018cad4d271b692f0f45e04f80a7b93ed897d7673b5dfc994ccc |
File details
Details for the file bayesian_networks_rey20074-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: bayesian_networks_rey20074-0.1.5-py3-none-any.whl
- Upload date:
- Size: 5.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 031064bc18f3b3471c43a9273b4bb8f411f9cc6a35410f4ae14fd5fcb6059fe5 |
|
MD5 | fca096cd1bf84825677b1b6cc7812b5b |
|
BLAKE2b-256 | 453e3a1ace9847ae60fd2da6f201d421ebb3a44f8d9bb3c9b108ba52f62b1a5f |