Skip to main content

Benchmark functions for Bayesian optimization

Project description

BayesO Benchmarks: Benchmark Functions for Bayesian Optimization

DOI Build Status License: MIT

This repository provides the implementation of benchmark functions for Bayesian optimization. The details of benchmark functions can be found in these notes.

Installation

We recommend installing it with virtualenv. You can choose one of three installation options.

  • Using PyPI repository (for user installation)

To install the released version in PyPI repository, command it.

pip install bayeso-benchmarks
  • Using source code (for developer installation)

To install bayeso-benchmarks from source code, command the following in the bayeso-benchmarks root.

pip install .
  • Using source code (for editable development mode)

To use editable development mode, command the following in the bayeso-benchmarks root.

pip install -e .

If you want to install the packages required for development, you can simply add [dev]. For example, pip install .[dev] or pip install -e .[dev].

  • Uninstallation

If you would like to uninstall bayeso-benchmarks, command it.

pip uninstall bayeso-benchmarks

Simple Example

A simple example on Branin function is shown below.

from bayeso_benchmarks import Branin

obj_fun = Branin()
bounds = obj_fun.get_bounds()

X = obj_fun.sample_uniform(100)

Y = obj_fun.output(X)
Y_noise = obj_fun.output_gaussian_noise(X)

Citation

@misc{KimJ2023software,
    author={Kim, Jungtaek},
    title={{BayesO Benchmarks}: Benchmark Functions for {Bayesian} Optimization},
    doi={10.5281/zenodo.7577330},
    url={https://github.com/jungtaekkim/bayeso-benchmarks},
    howpublished={\url{https://doi.org/10.5281/zenodo.7577330}},
    year={2023}
}

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayeso-benchmarks-0.2.0.tar.gz (37.2 kB view details)

Uploaded Source

Built Distribution

bayeso_benchmarks-0.2.0-py3-none-any.whl (28.6 kB view details)

Uploaded Python 3

File details

Details for the file bayeso-benchmarks-0.2.0.tar.gz.

File metadata

  • Download URL: bayeso-benchmarks-0.2.0.tar.gz
  • Upload date:
  • Size: 37.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.8

File hashes

Hashes for bayeso-benchmarks-0.2.0.tar.gz
Algorithm Hash digest
SHA256 4bfec9efc2245cee4ee4a48b5803901589839f5ab1690a1ed0a36d4c18596ab1
MD5 0d6f7adbec3eeef2be7ad0bddf2aa300
BLAKE2b-256 39934d5751dd4f1702b3c9c95a5c39c9b8fb833886d913c633f3863cc788184d

See more details on using hashes here.

File details

Details for the file bayeso_benchmarks-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for bayeso_benchmarks-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5b8bb8ca3c8c46b5e95d18609ed7610350c73b9e4e8eded3ef98a54e8d9f6c83
MD5 a234e3210553f5f9330edcd48b0562a5
BLAKE2b-256 99c6f27e35d498a80d00e34cb11f1ee20e19901b28fe1bc2b10f0e390a9bb962

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page