Fitting power law distributions using Bayesian Inference
Project description
BayesPowerlaw fits single or mixtures of power law distributions and estimate their exponent using Bayesian Inference, specifically Markov-Chain Monte Carlo Metropolis Hastings algorithm. See the Documentation page for details.
Installation : pip install BayesPowerlaw
Requirements
Python >= 3.6.2
numpy >= 1.10.1
scipy >= 1.0.0
matplotlib >= 2.0.0
Documentation: “http://BayesPowerlaw.readthedocs.org”
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
BayesPowerlaw-1.1.3.tar.gz
(214.9 kB
view details)
Built Distribution
File details
Details for the file BayesPowerlaw-1.1.3.tar.gz
.
File metadata
- Download URL: BayesPowerlaw-1.1.3.tar.gz
- Upload date:
- Size: 214.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 520419b7040579c5ae47b3272a20075c5e171b9e32e0ef928cc3bc387a46fdf1 |
|
MD5 | 6777bc60b3761738c7e11f2078e2c4e9 |
|
BLAKE2b-256 | 7ab6b65f40dc74aecb3e70183e61ecd2f78e33ec342cb6ab98a6cf1f0248e7ae |
File details
Details for the file BayesPowerlaw-1.1.3-py2.py3-none-any.whl
.
File metadata
- Download URL: BayesPowerlaw-1.1.3-py2.py3-none-any.whl
- Upload date:
- Size: 215.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5010045e5b04b8818b3b827ce5739665eb61f0439333362a6919d558f32f55d |
|
MD5 | 43ef2247327e63c2e59cafc055f7bd3c |
|
BLAKE2b-256 | 1069dab732040e2df3e2b464c70ba00092a0bbdafb8c2c546dcdf06a71b837a2 |