Skip to main content

Stitching together probabilistic models and inference.

Project description

Bayeux

Stitching together models and samplers

Unittests PyPI version

bayeux lets you write a probabilistic model in JAX and immediately have access to state-of-the-art inference methods. The API aims to be simple, self descriptive, and helpful. Simply provide a log density function (which doesn't even have to be normalized), along with a single point (specified as a pytree) where that log density is finite. Then let bayeux do the rest!

Installation

pip install bayeux-ml

Quickstart

We define a model by providing a log density in JAX. This could be defined using a probabilistic programming language (PPL) like numpyro, PyMC, TFP, distrax, oryx, coix, or directly in JAX.

import bayeux as bx
import jax

normal_density = bx.Model(
  log_density=lambda x: -x*x,
  test_point=1.)

seed = jax.random.key(0)

opt_results = normal_density.optimize.optax_adam(seed=seed)
# OR!
idata = normal_density.mcmc.numpyro_nuts(seed=seed)
# OR!
surrogate_posterior, loss = normal_density.vi.tfp_factored_surrogate_posterior(seed=seed)

Read more

This is not an officially supported Google product.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayeux_ml-0.1.14.tar.gz (27.2 kB view hashes)

Uploaded Source

Built Distribution

bayeux_ml-0.1.14-py3-none-any.whl (42.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page