Skip to main content

Experimental Bayesian planktic foraminifera calibration, for Python.

Project description

bayfox

Travis-CI Build Status

Experimental Bayesian planktic foraminifera calibration, for Python.

Please note that this package is currently under development. It will eat your pet hamster.

Quick example

First, load key packages and an example dataset:

import numpy as np
import bayfox as bfox

example_file = bfox.get_example_data('VM21-30.csv')
d = np.genfromtxt(example_file, delimiter=',', names=True, missing_values='NA')

This data (from Koutavas and Joanides 2012) has three columns giving, down-core depth, sediment age (calendar years BP) and δ18O for G. ruber (white) (‰; VPDB). The core site is in the Eastern Equatorial Pacific.

We can make a prediction of sea-surface temperature (SST) with predict_seatemp():

prediction = bfox.predict_seatemp(d['d18O_ruber'], d18osw=0.239, prior_mean=24.9, prior_std=7.81)

The values we're using for priors are roughly based on the range of SSTs we've seen for G. ruber (white) sediment core in the modern period, though prior standard deviation is twiced18osw is twice the spread we see in the modern record. δ18O for seawater (‰; VSMOW) during the modern record (LeGrande and Schmidt 2006). We'll assume it's constant -- for simplicity. We're also not correcting these proxies for changes in global ice volume, so these numbers will be off. Ideally we'd make this correction to δ18Oc series before the prediction. See the erebusfall package for simple ice-volume correction in Python.

To see actual numbers from the prediction, directly parse prediction.ensemble or use prediction.percentile() to get the 5%, 50% and 95% percentiles. You can also plot your prediction with bfox.predictplot(prediction).

This uses the pooled Bayesian calibration model, which is calibrated on annual SSTs. We can consider foram-specific variability with:

prediction = bfox.predict_seatemp(d['d18O_ruber'], d18osw=0.239, prior_mean=24.9, prior_std=7.81, 
                                  foram='G_ruber_white')

which uses our hierarchical model calibrated on annual SSTs. We can also estimate foram-specific seasonal effects with:

prediction = bfox.predict_seatemp(d['d18O_ruber'], d18osw=0.239, prior_mean=24.9, prior_std=7.81, 
                                  foram='G. ruber white', seasonal_seatemp=True)

This uses our hierarchical model calibrated on seasonal SSTs. Be sure to specify the foraminifera if you use this option.

You can also predict δ18O for planktic calcite using similar options, using the predict_d18oc() function.

Installation

To install bayfox with pip, run:

pip install bayfox

To install bayfox with conda, run:

conda install -c sbmalev bayfox

bayfox is not compatible with Python 2.

Support and development

License

bayfox is available under the Open Source GPLv3 (https://www.gnu.org/licenses).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayfox-0.0.1a2.tar.gz (4.5 MB view details)

Uploaded Source

Built Distribution

bayfox-0.0.1a2-py3-none-any.whl (4.6 MB view details)

Uploaded Python 3

File details

Details for the file bayfox-0.0.1a2.tar.gz.

File metadata

  • Download URL: bayfox-0.0.1a2.tar.gz
  • Upload date:
  • Size: 4.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for bayfox-0.0.1a2.tar.gz
Algorithm Hash digest
SHA256 1cd57abfadd438e8c567fcca75863898be12df8c794eed0816167c4d2a777167
MD5 ba0dc44fca30790de3073ca0786b70aa
BLAKE2b-256 f8dbbf7286cef3bac7dbf13aa6a8723c538d41f3db677dc66ff3928812297496

See more details on using hashes here.

File details

Details for the file bayfox-0.0.1a2-py3-none-any.whl.

File metadata

  • Download URL: bayfox-0.0.1a2-py3-none-any.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for bayfox-0.0.1a2-py3-none-any.whl
Algorithm Hash digest
SHA256 a372f8e3de5b35bf5403c61a775d3065bb47880dd1c9f9abf24c0974c7a11e07
MD5 7d28d269c13cbf40a813dffa202f89be
BLAKE2b-256 f4061d293e3ecbc6a95566ab7171d087da46d85514cbc955a13bebe40baa5de0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page