Bayesian Inference
Project description
bayinf: Bayesian Inference
Usage Examples
import numpy as np
from bayinf import infer_binomial, infer_poisson, infer_normal_known_variance, infer_normal_unknown_variance
# Binomial likelihood with Beta prior
data_binomial = [1, 1, 0, 1, 0, 1, 1, 0, 1, 0]
prior_alpha = 2
prior_beta = 2
print(f"Binomial Prior Alpha: {prior_alpha}")
print(f"Binomial Prior Beta: {prior_beta}")
posterior_alpha, posterior_beta = infer_binomial(data_binomial, prior_alpha, prior_beta)
print(f"Binomial Posterior Alpha: {posterior_alpha}")
print(f"Binomial Posterior Beta: {posterior_beta}")
# Poisson likelihood with Gamma prior
data_poisson = [2, 3, 1, 2, 4, 3, 2, 1, 3, 2]
prior_alpha = 1
prior_beta = 1
print(f"Poisson Prior Alpha: {prior_alpha}")
print(f"Poisson Prior Beta: {prior_beta}")
posterior_alpha, posterior_beta = infer_poisson(data_poisson, prior_alpha, prior_beta)
print(f"Poisson Posterior Alpha: {posterior_alpha}")
print(f"Poisson Posterior Beta: {posterior_beta}")
# Normal likelihood with known variance and Normal prior
data_normal_known_variance = [1.5, 2.0, 1.8, 2.2, 1.9, 2.1, 1.7, 2.3, 2.0, 1.6]
known_variance = 0.5
prior_mean = 0
prior_precision = 1
print(f"Normal (Known Variance) Prior Mean: {prior_mean}")
print(f"Normal (Known Variance) Prior Precision: {prior_precision}")
posterior_mean, posterior_precision = infer_normal_known_variance(data_normal_known_variance, known_variance, prior_mean, prior_precision)
print(f"Normal (Known Variance) Posterior Mean: {posterior_mean}")
print(f"Normal (Known Variance) Posterior Precision: {posterior_precision}")
# Normal likelihood with unknown variance and Normal-Gamma prior
data_normal_unknown_variance = [1.5, 2.0, 1.8, 2.2, 1.9, 2.1, 1.7, 2.3, 2.0, 1.6]
prior_mean = 0
prior_precision = 1
prior_df = 2
prior_scale = 1
print(f"Normal (Unknown Variance) Prior Mean: {prior_mean}")
print(f"Normal (Unknown Variance) Prior Precision: {prior_precision}")
print(f"Normal (Unknown Variance) Prior DF: {prior_df}")
print(f"Normal (Unknown Variance) Prior Scale: {prior_scale}")
posterior_mean, posterior_precision, posterior_df, posterior_scale = infer_normal_unknown_variance(data_normal_unknown_variance, prior_mean, prior_precision, prior_df, prior_scale)
print(f"Normal (Unknown Variance) Posterior Mean: {posterior_mean}")
print(f"Normal (Unknown Variance) Posterior Precision: {posterior_precision}")
print(f"Normal (Unknown Variance) Posterior DF: {posterior_df}")
print(f"Normal (Unknown Variance) Posterior Scale: {posterior_scale}")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
bayinf-0.1.0.tar.gz
(3.1 kB
view details)
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file bayinf-0.1.0.tar.gz.
File metadata
- Download URL: bayinf-0.1.0.tar.gz
- Upload date:
- Size: 3.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
6530bdd1382406849c7100a686e58b535639ca315d6e000946a83d9d47bdd6e5
|
|
| MD5 |
b8101e45ef7b7aa5b8f42f922c15af9b
|
|
| BLAKE2b-256 |
579354b6bac41f7733b67e8cb0d33d94002c6b2222cb586eeffb1318423c3927
|
File details
Details for the file bayinf-0.1.0-py3-none-any.whl.
File metadata
- Download URL: bayinf-0.1.0-py3-none-any.whl
- Upload date:
- Size: 3.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
97ba08df0f3eae8b2456892fb423bd4d83b456f3f3d76a40bf160ae48ae7f68c
|
|
| MD5 |
ad30fc51fe584d84c301c02f79668191
|
|
| BLAKE2b-256 |
65a9b2b9d496714a146246f136dce764f4b3c3208fda32a55ee16521df684d48
|