Skip to main content

Bayesian Inference

Project description

bayinf: Bayesian Inference

Usage Examples

import numpy as np
from bayinf import infer_binomial, infer_poisson, infer_normal_known_variance, infer_normal_unknown_variance

# Binomial likelihood with Beta prior
data_binomial = [1, 1, 0, 1, 0, 1, 1, 0, 1, 0]
prior_alpha = 2
prior_beta = 2
print(f"Binomial Prior Alpha: {prior_alpha}")
print(f"Binomial Prior Beta: {prior_beta}")
posterior_alpha, posterior_beta = infer_binomial(data_binomial, prior_alpha, prior_beta)
print(f"Binomial Posterior Alpha: {posterior_alpha}")
print(f"Binomial Posterior Beta: {posterior_beta}")

# Poisson likelihood with Gamma prior
data_poisson = [2, 3, 1, 2, 4, 3, 2, 1, 3, 2]
prior_alpha = 1
prior_beta = 1
print(f"Poisson Prior Alpha: {prior_alpha}")
print(f"Poisson Prior Beta: {prior_beta}")
posterior_alpha, posterior_beta = infer_poisson(data_poisson, prior_alpha, prior_beta)
print(f"Poisson Posterior Alpha: {posterior_alpha}")
print(f"Poisson Posterior Beta: {posterior_beta}")

# Normal likelihood with known variance and Normal prior
data_normal_known_variance = [1.5, 2.0, 1.8, 2.2, 1.9, 2.1, 1.7, 2.3, 2.0, 1.6]
known_variance = 0.5
prior_mean = 0
prior_precision = 1
print(f"Normal (Known Variance) Prior Mean: {prior_mean}")
print(f"Normal (Known Variance) Prior Precision: {prior_precision}")
posterior_mean, posterior_precision = infer_normal_known_variance(data_normal_known_variance, known_variance, prior_mean, prior_precision)
print(f"Normal (Known Variance) Posterior Mean: {posterior_mean}")
print(f"Normal (Known Variance) Posterior Precision: {posterior_precision}")

# Normal likelihood with unknown variance and Normal-Gamma prior
data_normal_unknown_variance = [1.5, 2.0, 1.8, 2.2, 1.9, 2.1, 1.7, 2.3, 2.0, 1.6]
prior_mean = 0
prior_precision = 1
prior_df = 2
prior_scale = 1
print(f"Normal (Unknown Variance) Prior Mean: {prior_mean}")
print(f"Normal (Unknown Variance) Prior Precision: {prior_precision}")
print(f"Normal (Unknown Variance) Prior DF: {prior_df}")
print(f"Normal (Unknown Variance) Prior Scale: {prior_scale}")
posterior_mean, posterior_precision, posterior_df, posterior_scale = infer_normal_unknown_variance(data_normal_unknown_variance, prior_mean, prior_precision, prior_df, prior_scale)
print(f"Normal (Unknown Variance) Posterior Mean: {posterior_mean}")
print(f"Normal (Unknown Variance) Posterior Precision: {posterior_precision}")
print(f"Normal (Unknown Variance) Posterior DF: {posterior_df}")
print(f"Normal (Unknown Variance) Posterior Scale: {posterior_scale}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bayinf-0.1.0.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

bayinf-0.1.0-py3-none-any.whl (3.4 kB view details)

Uploaded Python 3

File details

Details for the file bayinf-0.1.0.tar.gz.

File metadata

  • Download URL: bayinf-0.1.0.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bayinf-0.1.0.tar.gz
Algorithm Hash digest
SHA256 6530bdd1382406849c7100a686e58b535639ca315d6e000946a83d9d47bdd6e5
MD5 b8101e45ef7b7aa5b8f42f922c15af9b
BLAKE2b-256 579354b6bac41f7733b67e8cb0d33d94002c6b2222cb586eeffb1318423c3927

See more details on using hashes here.

File details

Details for the file bayinf-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: bayinf-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 3.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for bayinf-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 97ba08df0f3eae8b2456892fb423bd4d83b456f3f3d76a40bf160ae48ae7f68c
MD5 ad30fc51fe584d84c301c02f79668191
BLAKE2b-256 65a9b2b9d496714a146246f136dce764f4b3c3208fda32a55ee16521df684d48

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page